Effects of treatment with fluoride on bone mineral density and fracture risk - a meta-analysis

The Osteoporosis Clinic, Department of Endocrinology and Metabolism C, Aarhus University Hospital Aarhus Amtssygehus, Tage Hansens Gade 2, 8000 Aarhus C, Denmark.
Osteoporosis International (Impact Factor: 4.17). 03/2008; 19(3):257-68. DOI: 10.1007/s00198-007-0437-6
Source: PubMed

ABSTRACT Fluoride has fallen into discredit due to the absence of an anti-fracture effect. However, in this meta-analysis, a fracture reducing potential was seen at low fluoride doses [< or =20 mg fluoride equivalents (152 mg monofluorophosphate/44 mg sodium fluoride)]: OR = 0.3, 95% CI: 0.1-0.9 for vertebral and OR = 0.5, 95% CI: 0.3-0.8 for non-vertebral fractures.
Fluoride is incorporated into bone mineral and has an anabolic effect. However, the biomechanical competence of the newly formed bone may be reduced.
A systematic search of PubMed, Embase, and ISI web of science yielded 2,028 references.
Twenty-five eligible studies were identified. Spine BMD increased 7.9%, 95% CI: 5.4-10.5%, and hip BMD 2.1%, 95% CI: 0.9-3.4%. A meta-regression showed increasing spine BMD with increasing treatment duration (5.04 +/- 2.16%/year of treatment). Overall there was no significant effect on the risk of vertebral (OR = 0.8, 95% CI: 0.5-1.5) or non-vertebral fracture (OR = 0.8, 95% CI: 0.5-1.4). With a daily dose of < or =20 mg fluoride equivalents (152 mg monofluorophosphate/44 mg sodium fluoride), there was a statistically significant reduction in vertebral (OR = 0.3, 95% CI: 0.1-0.9) and non-vertebral (OR = 0.5, 95% CI: 0.3-0.8) fracture risk. With a daily dose >20 mg fluoride equivalents, there was no significant reduction in vertebral (OR = 1.3, 95% CI: 0.8-2.0) and non-vertebral (OR = 1.5, 95% CI: 0.8-2.8) fracture risk.
Fluoride treatment increases spine and hip BMD, depending on treatment duration. Overall there was no effect on hip or spine fracture risk. However, in subgroup analyses a low fluoride dose (< or =20 mg/day of fluoride equivalents) was associated with a significant reduction in fracture risk.


Available from: Peter Vestergaard, Jun 14, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorapatite glass-ceramics are osteoconductive. and glass-ceramics containing fluorapatite crystals in a bioactive silicate glass matrix can combine the benefits of fluorapatite with the bone-regenerative properties of bioactive glasses. High phosphate content (around 6 mol% P2O5) bioactive glasses (SiO2-P2O5-CaO-Na2O-CaF2) were prepared by a melt-quench route. Structural investigation using density measurements and calculations confirmed the presence of phosphorus as orthophosphate. Upon heat treatment, the glasses crystallised to mixed sodium calcium fluoride orthophosphates (sodium-containing compositions) and fluorapatite (sodium-free composition). Fluoride suppressed spontaneous crystallisation, allowing formation of glass-ceramics by controlled crystallisation. A notable feature is that silicate network polymerisation and network connectivity did not change during crystallisation, resulting in orthophosphate and fluorapatite crystals embedded within a bioactive glass matrix. By keeping the phosphate content high and the sodium content low, fluorapatite glass-ceramics can be obtained, while not affecting the structure of the bioactive silicate glass phase. (C) 2012 Elsevier B.V. All rights reserved.
    Journal of Non-Crystalline Solids 07/2012; 358(12-13-12-13):1438-1442. DOI:10.1016/J.Jnoncrysol.2012.03.014 · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone material is built in a complex multiscale arrangement of mineralized collagen fibrils containing water, proteoglycans and some noncollagenous proteins. This organization is not static as bone is constantly remodeled and thus able to repair damaged tissue and adapt to the loading situation. In preventing fractures, the most important mechanical property is toughness, which is the ability to absorb impact energy without reaching complete failure. There is no simple explanation for the origin of the toughness of bone material, and this property depends in a complex way on the internal architecture of the material on all scales from nanometers to millimeters. Hence, fragility may have different mechanical origins, depending on which toughening mechanism is not working properly. This article reviews the toughening mechanisms described for bone material and attempts to put them in a clinical context, with the hope that future analysis of bone fragility may be guided by this collection of possible mechanistic origins.
    Calcified Tissue International 03/2015; DOI:10.1007/s00223-015-9978-4 · 2.75 Impact Factor
  • Bone 12/2011; 49(6):1381. DOI:10.1016/j.bone.2011.09.031 · 4.46 Impact Factor