IL-33 can promote survival, adhesion and cytokine production in human mast cells

Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA.
Laboratory Investigation (Impact Factor: 3.83). 11/2007; 87(10):971-8. DOI: 10.1038/labinvest.3700663
Source: PubMed

ABSTRACT IL-33 is a recently identified member of the IL-1 family of molecules, which also includes IL-1 and IL-18. IL-33 binds to the receptor, T1/ST2/IL-1R4, and can promote cytokine secretion by Th2 cells and NF-kappaB phosphorylation in mouse mast cells. However, the effects of these molecules, especially IL-33, in human mast cells are poorly understood. Expression of the receptors for IL-1 family molecules, specifically, IL-1R1, IL-18R and T1/ST2, was detectable intracellularly in human umbilical cord blood-derived mast cells (HUCBMCs) by flow cytometry, but was scarcely detectable on the cells' surface. However, IL-1beta, IL-18 or IL-33 induced phosphorylation of Erk, p38 and JNK in naïve HUCBMCs, and IL-33 or IL-1beta, but not IL-18, enhanced the survival of naive HUCBMCs and promoted their adhesion to fibronectin. IL-33 or IL-1beta also induced IL-8 and IL-13 production in naïve HUCBMCs, and enhanced production of these cytokines in IgE/anti-IgE-stimulated HUCBMCs, without enhancing secretion of either PGD(2) or histamine. Moreover, IL-33-mediated IL-8 production by HUCBMCs was markedly reduced by the p38 MAPK inhibitor, SB203580. In contrast to findings with mouse mast cells, IL-18 neither induced nor enhanced secretion of the mediators PGD(2) or histamine by HUCBMCs. Our findings identify previously unknown functions of IL-33 in human mast cells. One of these is that IL-33, like IL-1beta, can induce cytokine production in human mast cells even in the absence of stimuli of FcepsilonRI aggregation. Our findings thus support the hypothesis that IL-33 may enhance mast cell function in allergic disorders and other settings, either in the presence or absence of co-stimulation of mast cells via IgE/antigen-FcepsilonRI signals.


Available from: Hajime Suto, Nov 04, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-33 is a more recently identified member of the IL-1 cytokine family, expressed in the nucleus of epithelial cells and released into the extracellular space following tissue damage. The impact of IL-33 as a regulator of the adaptive immune response has been studied extensively, with an understood role for IL-33 in the effector functions of CD4(+) Th2 cells. IL-33, however, is now being shown to initiate the Th2-polarizing function of DCs, and stimulate the secretion of the type 2-associated cytokines, IL-4, IL-5, and IL-13, from tissue-resident innate-immune cells, especially ILCs and MCs. IL-33 also initiates and perpetuates local inflammatory responses through the recruitment and activation of type 2- and inflammatory-associated effectors, such as eosinophils, basophils, and neutrophils. As such, IL-33 drives and amplifies type 2-dependent immunity, as well as type 2-dependent tissue destruction and inflammation. It is also becoming apparent that IL-33 supports the reparative capacity of macrophage and ILCs, but these functions may also contribute to chronic fibrotic diseases. Herein, we review new developments in the understanding of IL-33 as it functions in Th2 cells and type 2 immunity. This includes a discussion of our evolving understanding of how IL-33 directly and indirectly promotes type 2 immune responses through action on innate cells in immunity and the pathogenesis of atopic and fibrotic diseases. © Society for Leukocyte Biology.
    Journal of leukocyte biology 03/2015; DOI:10.1189/jlb.3RI1214-595R · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The non-classical human leukocyte antigen-G, HLA-G, plays an important role in inducing tolerance, through its immunosuppressive effects on all types of immune cells. Immune tolerance is a key issue in the liver, both in liver homeostasis and in the response to liver injury or cancer. It would therefore appear likely that HLA-G plays an important role in liver diseases. Indeed, this molecule was recently shown to be produced by mast cells in the livers of patients infected with hepatitis C virus (HCV). Furthermore, the number of HLA-G-positive mast cells was significantly associated with fibrosis progression. The generation of immune tolerance is a role common to both HLA-G, as a molecule, and the liver, as an organ. This review provides a summary of the evidence implicating HLA-G in liver diseases. In the normal liver, HLA-G transcripts can be detected, but there is no HLA-G protein. However, HLA-G protein is detectable in the liver tissues and/or plasma of patients suffering from hepatocellular carcinoma, hepatitis B or C, or visceral leishmaniasis and in liver transplant recipients. The cells responsible for producing HLA-G differ between diseases. HLA-G expression is probably induced by microenvironmental factors, such as cytokines. The expression of HLA-G receptors, such as ILT2, ILT4, and KIRD2L4, on liver cells has yet to be investigated, but these receptors have been detected on all types of immune cells, and such cells are present in liver. The tolerogenic properties of HLA-G explain its deleterious effects in cancers and its beneficial effects in transplantation. Given the key role of HLA-G in immune tolerance, new therapeutic agents targeting HLA-G could be tested for the treatment of these diseases in the future. Copyright © 2015. Published by Elsevier B.V.
    Journal of Hepatology 03/2015; 84. DOI:10.1016/j.jhep.2015.03.007 · 10.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-33 signals influence various immune cells during differentiation, immune responses and homeostasis. As discussed in this Review, IL-33 via TI/ST2L regulates the functions of immune cells including T cells, B cells, DCs, macrophages, mast cells, and innate lymphoid cells (ILCs). Stimulation with IL-33 is crucial for CD4+ T cell polarized into Th2 immunity and for the induction of Treg. CD8+ T cells can also express ST2L and IL-33 promotes features of effector CD8+ T cells. For macrophages and ILCs, ST2L presents on these cells and IL-33 induces Th2 cytokine production. IL-33 modulates adhesion, activation, maturation, and cytokine production by mast cells. ST2 is expressed in B1 and is important for differentiation of IL-10-producing B cells. Understanding the specific role of IL-33/ST2L in different immune cells will help to answer the remaining questions that are important for diseases pathologies and intervention strategies by targeting the IL-33/ST2L signals.
    Immunology Letters 02/2015; 179(1). DOI:10.1016/j.imlet.2015.01.008 · 2.37 Impact Factor