Article

Disposition and metabolic fate of prasugrel in mice, rats, and dogs

Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
Xenobiotica (Impact Factor: 2.1). 09/2007; 37(8):884-901. DOI: 10.1080/00498250701485542
Source: PubMed

ABSTRACT The disposition and metabolism of prasugrel, a thienopyridine prodrug and a potent inhibitor of platelet aggregation in vivo, were investigated in mice, rats, and dogs. Prasugrel was rapidly absorbed and extensively metabolized. In the mouse and dog, maximum plasma concentration of radioactivity was observed in less than 1 h after an oral [14C]prasugrel dose. Most of the administered prasugrel dose was recovered in the faeces of rats and dogs (72% and 52-73%, respectively), and in mice urine (54%). Prasugrel is hydrolysed by esterases to a thiolactone, which is subsequently metabolized to thiol-containing metabolites. The main circulating thiol-containing metabolite in the three animal species is the pharmacologically active metabolite, R-138727. The thiol-containing metabolites are further metabolized by S-methylation and conjugation with cysteine.

0 Followers
 · 
98 Views
  • Source
    • "Mean elimination half-life of the active metabolite is 3.7 hours. Like other thienopyridines, the metabolites of prasugrel are excreted via the kidney [21] [22] [23] [24] [25] [26] [27] [28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Thienopyridines are a class of drug targeting the platelet adenosine diphosphate (ADP) 2 receptor. They significantly reduce platelet activity and are therefore clinically beneficial in settings where platelet activation is a key pathophysiological feature, particularly myocardial infarction. Ticlopidine, the first of the class introduced to clinical practice, was soon challenged and almost completely replaced by clopidogrel for its better tolerability. More recently, prasugrel and ticagrelor have been shown to provide a more powerful antiplatelet action compared to clopidogrel but at a cost of higher risk of bleeding complications. Cangrelor, a molecule very similar to ticagrelor, is currently being evaluated against clopidogrel. Considering the key balance of ischemic protection and bleeding risk, this paper discusses the background to the development of prasugrel, ticagrelor, and cangrelor and aims to characterise their risk-benefit profile and possible implementation in daily practice.
    Advances in Hematology 12/2010; 2010(1687-9104):595934. DOI:10.1155/2010/595934
  • Drug Metabolism and Pharmacokinetics 02/2009; 24(2):197-8. DOI:10.2133/dmpk.24.197 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In previous papers, we have offered a strategic framework regarding metabolites of drugs in humans and the need to assess these in laboratory animal species (also termed Metabolites in Safety Testing or MIST; Smith and Obach, Chem. Res. Toxicol. (2006) 19, 1570-1579). Three main tenets of this framework were founded in (i) comparisons of absolute exposures (as circulating concentrations or total body burden), (ii) the nature of the toxicity mechanism (i.e., reversible interaction at specific targets versus covalent binding to multiple macromolecules), and (iii) the biological matrix in which the metabolite was observed (circulatory vs excretory). In the present review, this framework is expanded to include a fourth tenet: considerations for the duration of exposure. Basic concepts of pharmacology are utilized to rationalize the relationship between exposure (to parent drug or metabolite) and various effects ranging from desired therapeutic effects through to severe toxicities. Practical considerations of human ADME (absorption-distribution-metabolism-excretion) data, to determine which metabolites should be further evaluated for safety, are discussed. An analysis of recently published human ADME studies shows that the number of drug metabolites considered to be important for MIST can be excessively high if a simple percentage-of-parent-drug criterion is used without consideration of the aforementioned four tenets. Concern over unique human metabolites has diminished over the years as experience has shown that metabolites of drugs in humans will almost always be observed in laboratory animals, although the proportions may vary. Even if a metabolite represents a high proportion of the dose in humans and a low proportion in animals, absolute abundances in animals frequently exceed that in humans because the doses used in animal toxicology studies are much greater than therapeutic doses in humans. The review also updates the enzymatic basis for the differences between species and how these relate to MIST considerations.
    Chemical Research in Toxicology 02/2009; 22(2):267-79. DOI:10.1021/tx800415j · 4.19 Impact Factor
Show more