Kisspeptin synchronizes Preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes

University of Tours, Tours, Centre, France
Endocrinology (Impact Factor: 4.64). 12/2007; 148(11):5258-67. DOI: 10.1210/en.2007-0554
Source: PubMed

ABSTRACT We determined whether kisspeptin could be used to manipulate the gonadotropin axis and ovulation in sheep. First, a series of experiments was performed to determine the gonadotropic responses to different modes and doses of kisspeptin administration during the anestrous season using estradiol-treated ovariectomized ewes. We found that: 1) injections (iv) of doses as low as 6 nmol human C-terminal Kiss1 decapeptide elevate plasma LH and FSH levels, 2) murine C-terminal Kiss1 decapeptide was equipotent to human C-terminal Kiss1 decapeptide in terms of the release of LH or FSH, and 3) constant iv infusion of kisspeptin induced a sustained release of LH and FSH over a number of hours. During the breeding season and in progesterone-synchronized cyclical ewes, constant iv infusion of murine C-terminal Kiss1 decapeptide-10 (0.48 mumol/h over 8 h) was administered 30 h after withdrawal of a progesterone priming period, and surge responses in LH occurred within 2 h. Thus, the treatment synchronized preovulatory LH surges, whereas the surges in vehicle-infused controls were later and more widely dispersed. During the anestrous season, we conducted experiments to determine whether kisspeptin treatment could cause ovulation. Infusion (iv) of 12.4 nmol/h kisspeptin for either 30 or 48 h caused ovulation in more than 80% of kisspeptin-treated animals, whereas less than 20% of control animals ovulated. Our results indicate that systemic delivery of kisspeptin provides new strategies for the manipulation of the gonadotropin secretion and can cause ovulation in noncyclical females.

Download full-text


Available from: Iain J Clarke, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animals inhabiting temperate and boreal latitudes experience marked seasonal changes in the quality of their environments and maximize reproductive success by phasing breeding activities with the most favorable time of year. Whereas the specific mechanisms driving seasonal changes in reproductive function vary across species, converging lines of evidence suggest gonadotropin-inhibitory hormone (GnIH) serves as a key component of the neuroendocrine circuitry driving seasonal changes in reproduction and sexual motivation in some species. In addition to anticipating environmental change through transduction of photoperiodic information and modifying reproductive state accordingly, GnIH is also positioned to regulate acute changes in reproductive status should unpredictable conditions manifest throughout the year. The present overview summarizes the role of GnIH in avian and mammalian seasonal breeding while considering the similarities and disparities that have emerged from broad investigations across reproductively photoperiodic species. Copyright © 2014. Published by Elsevier Inc.
    Frontiers in Neuroendocrinology 12/2014; 37. DOI:10.1016/j.yfrne.2014.12.001 · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kisspeptin neurons are critical components of the neuronal network controlling the activity of the gonadotropin-releasing hormone (GnRH) neurons. A variety of genetically-manipulated mouse models have recently facilitated the study of the electrical activity of the two principal kisspeptin neuron populations located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARN) in acute brain slices. We discuss here the mechanisms and pathways through which kisspeptin neurons regulate GnRH neuron activity. We then examine the different kisspeptin-green fluorescent protein mouse models being used for kisspeptin electrophysiology and the data obtained to date for RP3V and ARN kisspeptin neurons. In light of these new observations on the spontaneous firing rates, intrinsic membrane properties, and neurotransmitter regulation of kisspeptin neurons, we speculate on the physiological roles of the different kisspeptin populations.
    Frontiers in Neuroendocrinology 06/2014; 36. DOI:10.1016/j.yfrne.2014.05.006 · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hypothalamus integrates endogenous and exogenous inputs to control the pituitary-gonadal axis. The ultimate hypothalamic influence on reproductive activity is mediated through timely secretion of GnRH in the portal blood, which modulates the release of gonadotropins from the pituitary. In this context neurons expressing the RF-amide neuropeptide kisspeptin present required features to fulfill the role of the long sought-after hypothalamic integrative centre governing the stimulation of GnRH neurons. Here we focus on the intracellular signaling pathways triggered by kisspeptin through its cognate receptor KISS1R and on the potential role of proteins interacting with this receptor. We then review evidence implicating both kisspeptin and RFRP3 - another RF-amide neuropeptide - in the temporal orchestration of both the pre-ovulatory LH surge in female rodents and the organization of seasonal breeding in photoperiodic species.
    Molecular and Cellular Endocrinology 10/2013; 382(1). DOI:10.1016/j.mce.2013.10.015 · 4.24 Impact Factor