Hemispheric asymmetries for temporal information processing: transient detection versus sustained monitoring.

Department of Psychology, University of Melbourne, Parkville, Victoria 3010, Australia.
Brain and Cognition (Impact Factor: 2.82). 04/2008; 66(2):168-75. DOI: 10.1016/j.bandc.2007.07.002
Source: PubMed

ABSTRACT This study investigated functional differences in the processing of visual temporal information between the left and right hemispheres (LH and RH). Participants indicated whether or not a checkerboard pattern contained a temporal gap lasting between 10 and 40 ms. When the stimulus contained a temporal signal (i.e. a gap), responses were more accurate for the right visual field-left hemisphere (RVF-LH) than for the left visual field-right hemisphere (LVF-RH). This RVF-LH advantage was larger for the shorter gap durations (Experiments 1 and 2), suggesting that the LH has finer temporal resolution than the RH, and is efficient for transient detection. In contrast, for noise trials (i.e. trial without temporal signals), there was a LVF-RH advantage. This LVF-RH advantage was observed when the entire stimulus duration was long (240 ms, Experiment 1), but was eliminated when the duration was short (120 ms, Experiment 2). In Experiment 3, where the gap was placed toward the end of the stimulus presentation, a LVF-RH advantage was found for noise trials whereas the RVF-LH advantage was eliminated for signal trials. It is likely that participants needed to monitor the stimulus for a longer period of time when the gap was absent (i.e. noise trials) or was placed toward the end of the presentation. The RH may therefore be more efficient in the sustained monitoring of visual temporal information whereas the LH is more efficient for transient detection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the fact that hemispheric asymmetry of attention has been widely studied, a clear picture of this complex phenomenon is still lacking. The aim of the present study was to provide an efficient and reliable measurement of potential hemispheric asymmetries of three attentional networks, i.e. alerting, orienting and executive attention. Participants (N=125) were tested with the Lateralized Attention Network Test (LANT) that allowed us to investigate the efficiency of the networks in both visual fields (VF). We found a LVF advantage when a target occurred in an unattended location, which seems to reflect right hemisphere superiority in control of the reorienting of attention. Furthermore, a LVF advantage in conflict resolution was observed, which may indicate hemispheric asymmetry of the executive network. No VF effect for alerting was found. The results, consistent with the common notion of general right hemisphere dominance for attention, provide a more detailed account of hemispheric asymmetries of the attentional networks than previous studies using the LANT task.
    Brain and Cognition 04/2012; 79(2):117-28. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Even though auditory stimuli do not directly convey information related to visual stimuli, they often improve visual detection and identification performance. Auditory stimuli often alter visual perception depending on the reliability of the sensory input, with visual and auditory information reciprocally compensating for ambiguity in the other sensory domain. Perceptual processing is characterized by hemispheric asymmetry. While the left hemisphere is more involved in linguistic processing, the right hemisphere dominates spatial processing. In this context, we hypothesized that an auditory facilitation effect in the right visual field for the target identification task, and a similar effect would be observed in the left visual field for the target localization task. In the present study, we conducted target identification and localization tasks using a dualstream rapid serial visual presentation. When two targets are embedded in a rapid serial visual presentation stream, the target detection or discrimination performance for the second target is generally lower than for the first target; this deficit is well known as attentional blink. Our results indicate that auditory stimuli improved target identification performance for the second target within the stream when visual stimuli were presented in the right, but not the left visual field. In contrast, auditory stimuli improved second target localization performance when visual stimuli were presented in the left visual field. An auditory facilitation effect was observed in perceptual processing, depending on the hemispheric specialization. Our results demonstrate a dissociation between the lateral visual hemifield in which a stimulus is projected and the kind of visual judgment that may benefit from the presentation of an auditory cue.
  • Source
    Yasuhiro Takeshima, Jiro Gyoba

Full-text (2 Sources)

Available from
May 27, 2014