Article

A role for the human dorsal anterior cingulate cortex in fear expression.

Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA.
Biological Psychiatry (Impact Factor: 9.47). 12/2007; 62(10):1191-4. DOI: 10.1016/j.biopsych.2007.04.032
Source: PubMed

ABSTRACT Rodent studies implicate the prelimbic (PL) region of the medial prefrontal cortex in the expression of conditioned fear. Human studies suggest that the dorsal anterior cingulate cortex (dACC) plays a role similar to PL in mediating or modulating fear responses. This study examined the role of dACC during fear conditioning in healthy humans with magnetic resonance imaging (MRI).
Novel analyses were conducted on data from two cohorts that had previously undergone scanning to study fear extinction. Structural and functional brain data were acquired with MRI; the functional MRI (fMRI) component employed an event-related design. Skin conductance response (SCR) was the index of conditioned responses.
We found that: 1) cortical thickness within dACC is positively correlated with SCR during conditioning; 2) dACC is activated by a conditioned fear stimulus; and 3) this activation is positively correlated with differential SCR. Moreover, the dACC region implicated in this research corresponds to the target of anterior cingulotomy, an ablative surgical treatment for patients with mood and anxiety disorders.
Convergent structural, functional, and lesion findings from separate groups of subjects suggest that dACC mediates or modulates fear expression in humans. Collectively, these data implicate this territory as a potential target for future anti-anxiety therapies.

Download full-text

Full-text

Available from: Scott P Orr, Jul 03, 2015
0 Followers
 · 
275 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fear learning and regulation is as a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.
    01/2015; 1:134-146. DOI:10.1016/j.ynstr.2014.11.004
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent research has found that individuals with posttraumatic stress disorder (PTSD) exhibit an impaired memory of fear extinction compounded by deficient functional activation of key nodes of the fear network including the amygdala, hippocampus, ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC). Research has shown these regions are sexually dimorphic and activate differentially in healthy men and women during fear learning tasks. To explore biological markers of sex differences following exposure to psychological trauma, we used a fear learning and extinction paradigm together with functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) to assess 31 individuals with PTSD (18 women; 13 men) and 25 matched trauma-exposed healthy control subjects (13 women; 12 men). Whereas no sex differences appeared within the trauma-exposed healthy control group, both psychophysiological and neural activation patterns within the PTSD group indicated deficient recall of extinction memory among men and not among women. Men with PTSD exhibited increased activation in the left rostral dACC during extinction recall compared with women with PTSD. These findings highlight the importance of tracking sex differences in fear extinction when characterizing the underlying neurobiological mechanisms of PTSD psychopathology.
    Neurobiology of Learning and Memory 09/2014; 113. DOI:10.1016/j.nlm.2014.02.003 · 4.04 Impact Factor