Article

Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge.

School of Biological and Biomedical Science, Durham University, South Road, Durham DH1 3LE, UK.
Journal of Anatomy (Impact Factor: 2.23). 11/2007; 211(4):567-76. DOI: 10.1111/j.1469-7580.2007.00778.x
Source: PubMed

ABSTRACT Cultured cells are dramatically affected by the micro-environment in which they are grown. In this study, we have investigated whether HepG2 liver cells grown in three dimensional (3-D) cultures cope more effectively with the known cytotoxic agent, methotrexate, than their counterparts grown on traditional two dimensional (2-D) flat plastic surfaces. To enable 3-D growth of HepG2 cells in vitro, we cultured cells on 3-D porous polystyrene scaffolds previously developed in our laboratories. HepG2 cells grown in 3-D displayed excellent morphological characteristics and formed numerous bile canaliculi that were seldom seen in cultures grown on 2-D surfaces. The function of liver cells grown on 3-D supports was significantly enhanced compared to activity of cells grown on 2-D standard plasticware. Unlike their 2-D counterparts, 3-D cultures were less susceptible to lower concentrations of methotrexate. Cells grown in 3-D maintained their structural integrity, possessed greater viability, were less susceptible to cell death at higher levels of the cytotoxin compared to 2-D cultures, and appeared to respond to the drug in a manner more comparable to its known activity in vivo. Our results suggest that hepatotoxicity testing using 3-D cultures might be more likely to reflect true physiological responses to cytotoxic compounds than existing models that rely on 2-D culture systems. This technology has potential applications for toxicity testing and drug screening.

0 Bookmarks
 · 
193 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been demonstrated that three-dimensional (3D) cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol) (PVA) and gelatin (G) to model a hepatocellular carcinoma (HCC) in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, β-actin and α5β1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena.
    03/2015; 6(1):16-32. DOI:10.3390/jfb6010016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three-dimensional (3D) culture systems such as cell-laden hydrogels are superior to standard two-dimensional (2D) monolayer cultures for many drug-screening applications. However, their adoption into high-throughput screening (HTS) has been lagging, in part because of the difficulty of incorporating these culture formats into existing robotic liquid handling and imaging infrastructures. Dispensing cell-laden prepolymer solutions into 2D well plates is a potential solution but typically requires large volumes of reagents to avoid evaporation during polymerization, which (1) increases costs, (2) makes drug penetration variable and (3) complicates imaging. Here we describe a technique to efficiently produce 3D microgels using automated liquid-handling systems and standard, nonpatterned, flat-bottomed, 384-well plates. Sub-millimeter-diameter, cell-laden collagen gels are deposited on the bottom of a ~2.5 mm diameter microwell with no concerns about evaporation or meniscus effects at the edges of wells, using aqueous two-phase system patterning. The microscale cell-laden collagen-gel constructs are readily imaged and readily penetrated by drugs. The cytotoxicity of chemotherapeutics was monitored by bioluminescence and demonstrated that 3D cultures confer chemoresistance as compared with similar 2D cultures. Hence, these data demonstrate the importance of culturing cells in 3D to obtain realistic cellular responses. Overall, this system provides a simple and inexpensive method for integrating 3D culture capability into existing HTS infrastructure. © 2014 Society for Laboratory Automation and Screening.
    Journal of the Association for Laboratory Automation 12/2014; DOI:10.1177/2211068214563793 · 1.50 Impact Factor

Preview

Download
2 Downloads
Available from