Article

Modafinil: a review of neurochemical actions and effects on cognition.

Imaging Research Center, Davis School of Medicine, UC-Davis Health System, University of California, Sacramento, CA 95817, USA.
Neuropsychopharmacology (Impact Factor: 7.83). 07/2008; 33(7):1477-502. DOI: 10.1038/sj.npp.1301534
Source: PubMed

ABSTRACT Modafinil (2-[(Diphenylmethyl) sulfinyl] acetamide, Provigil) is an FDA-approved medication with wake-promoting properties. Pre-clinical studies of modafinil suggest a complex profile of neurochemical and behavioral effects, distinct from those of amphetamine. In addition, modafinil shows initial promise for a variety of off-label indications in psychiatry, including treatment-resistant depression, attention-deficit/hyperactivity disorder, and schizophrenia. Cognitive dysfunction may be a particularly important emerging treatment target for modafinil, across these and other neuropsychiatric disorders. We aimed to comprehensively review the empirical literature on neurochemical actions of modafinil, and effects on cognition in animal models, healthy adult humans, and clinical populations. We searched PubMed with the search term 'modafinil' and reviewed all English-language articles for neurochemical, neurophysiological, cognitive, or information-processing experimental measures. We additionally summarized the pharmacokinetic profile of modafinil and clinical efficacy in psychiatric patients. Modafinil exhibits robust effects on catecholamines, serotonin, glutamate, gamma amino-butyric acid, orexin, and histamine systems in the brain. Many of these effects may be secondary to catecholamine effects, with some selectivity for cortical over subcortical sites of action. In addition, modafinil (at well-tolerated doses) improves function in several cognitive domains, including working memory and episodic memory, and other processes dependent on prefrontal cortex and cognitive control. These effects are observed in rodents, healthy adults, and across several psychiatric disorders. Furthermore, modafinil appears to be well-tolerated, with a low rate of adverse events and a low liability to abuse. Modafinil has a number of neurochemical actions in the brain, which may be related to primary effects on catecholaminergic systems. These effects are in general advantageous for cognitive processes. Overall, modafinil is an excellent candidate agent for remediation of cognitive dysfunction in neuropsychiatric disorders.

Download full-text

Full-text

Available from: Michael Minzenberg, Jun 30, 2015
0 Followers
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several efforts to develop pharmacological treatments with a beneficial effect on cognition in schizophrenia are underway, while cognitive remediation has shown modest effects on cognitive performance. Our goal was to test if pharmacological augmentation of cognitive training would result in enhancement of training-induced learning. We chose modafinil as the pharmacological augmenting agent, as it is known to have beneficial effects on learning and cognition. 49 participants with chronic schizophrenia were enroled in a double-blind, placebo-controlled study across two sites and were randomised to either modafinil (200mg/day) or placebo. All participants engaged in a cognitive training program for 10 consecutive weekdays. The primary outcome measure was the performance on the trained tasks and secondary outcome measures included MATRICS cognitive battery, proxy measures of everyday functioning and symptom measures. 84% of the participants completed all study visits. Both groups showed significant improvement in the performance of the trained tasks suggesting potential for further learning. Modafinil did not induce differential enhancement on the performance of the trained tasks or any differential enhancement of the neuropsychological and functional measures compared to placebo. Modafinil showed no significant effects on symptom severity. Our study demonstrated that combining pharmacological compounds with cognitive training is acceptable to patients and can be implemented in large double-blind randomised controlled trials. The lack of differential enhancement of training-induced learning raises questions, such as choice and optimal dose of drug, cognitive domains to be trained, type of cognitive training, intervention duration and chronicity of illness that require systematic investigation in future studies. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
    European Neuropsychopharmacology 03/2015; DOI:10.1016/j.euroneuro.2015.03.009 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) of modafinil or armodafinil (ar/mod) augmentation in schizophrenia. We searched PubMed, clinical trial registries, reference lists, and other sources for parallel group, placebo-controlled RCTs. Our primary outcome variable was the effect of ar/mod on negative symptom outcomes. Eight RCTs (pooled N = 372; median duration, 8 weeks) met our selection criteria. Ar/mod (200 mg/day) significantly attenuated negative symptom ratings (6 RCTs; N = 322; standardized mean difference [SMD], -0.26; 95% CI, -0.48 to -0.04). This finding remained similar in all but one sensitivity analysis - when the only RCT in acutely ill patients was excluded, the outcome was no longer statistically significant (SMD, -0.17; 95% CI, -0.51 to 0.06). The absolute advantage for ar/mod was small: just 0.27 points on the PANSS-N (6 RCTs). Ar/mod attenuated total psychopathology ratings (7 RCTs; N = 342; SMD, -0.23; 95% CI, -0.45 to -0.02) but did not influence positive symptom ratings (5 RCTs; N = 302; mean difference, -0.58; 95% CI, -1.71 to 0.55). Although data were limited, cognition, fatigue, daytime drowsiness, adverse events, and drop out rates did not differ significantly between ar/mod and placebo groups. Fixed and random effects models yielded similar results. There was no heterogeneity in all but one analysis. Publication bias could not be tested. We conclude that ar/mod (200 mg/day) is safe and well tolerated in the short-term treatment of schizophrenia. Ar/mod reduces negative symptoms with a small effect size; the absolute advantage is also small, and the advantage disappears when chronically ill patients or those with high negative symptom burden are treated. Ar/mod does not benefit or worsen other symptom dimensions in schizophrenia.
    Journal of Psychiatric Research 09/2014; 60. DOI:10.1016/j.jpsychires.2014.09.013 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive enhancement is perhaps one of the most intriguing and controversial topics in neuroscience today. Currently, the main classes of drugs used as potential cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine), but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are also frequently used. Pharmacologically, substances that enhance the components of the memory/learning circuits-dopamine, glutamate (neuronal excitation), and/or norepinephrine-stand to improve brain function in healthy individuals beyond their baseline functioning. In particular, non-medical use of prescription stimulants such as MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent rise among teens and young adults in schools and college campuses. However, this enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate function via the use of psychostimulants may impair behavioral flexibility, leading to the development and/or potentiation of addictive behaviors. Furthermore, dopamine and norepinephrine do not display linear effects; instead, their modulation of cognitive and neuronal function maps on an inverted-U curve. Healthy individuals run the risk of pushing themselves beyond optimal levels into hyperdopaminergic and hypernoradrenergic states, thus vitiating the very behaviors they are striving to improve. Finally, recent studies have begun to highlight potential damaging effects of stimulant exposure in healthy juveniles. This review explains how the main classes of cognitive enhancing drugs affect the learning and memory circuits, and highlights the potential risks and concerns in healthy individuals, particularly juveniles and adolescents. We emphasize the performance enhancement at the potential cost of brain plasticity that is associated with the neural ramifications of nootropic drugs in the healthy developing brain.
    Frontiers in Systems Neuroscience 05/2014; 8:38. DOI:10.3389/fnsys.2014.00038

Similar Publications