Article

Amylin and its relation to insulin and lipids in obese children before and after weight loss.

Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Dr. F. Steiner Str. 5, 45711 Datteln, Germany.
Obesity (Impact Factor: 4.39). 09/2007; 15(8):2006-11. DOI: 10.1038/oby.2007.239
Source: PubMed

ABSTRACT There are limited data concerning the relationships between amylin, weight status, lipids, insulin, and insulin resistance in obese humans. Therefore, the aim was to study these relationships in cross-sectional and longitudinal analyses.
Fasting amylin, insulin, glucose, triglycerides, low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol, and percentage body fat based on skinfold measurements were determined in 37 obese children (median age, 11.5 years) and compared with 16 lean children of the same age and gender. Furthermore, we analyzed the changes of these variables in the obese children after participating in a one-year weight loss intervention program.
Obese children had significantly (p < 0.01) higher amylin, triglycerides, LDL-cholesterol, and insulin levels as compared with the lean children. In multiple linear regression analysis, amylin was significantly (p < 0.05) correlated to insulin and triglycerides, but not to age, gender, pubertal stage, or BMI. Changes of amylin correlated significantly (p < 0.001) to changes of insulin (r = 0.54) and triglycerides (r = 0.49), but not to changes of BMI or percentage body fat. Substantial weight loss in 17 children led to a significant (p < 0.05) decrease of amylin, triglycerides, and insulin, in contrast to the 20 children without substantial weight loss.
Amylin levels were related to insulin concentrations in both cross-sectional and longitudinal analyses, suggesting a relationship between amylin and insulin secretion. Amylin levels were reversibly increased in obesity and related to triglyceride concentrations.

0 Followers
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a major global health problem and predisposes individuals to several comorbidities that can affect life expectancy. Interventions based on lifestyle modification (e.g., improved diet and exercise) are integral components in the management of obesity. However, although weight loss can be achieved through dietary restriction and/or increased physical activity, over the long term many individuals regain weight. The aim of this article is to review the research into the processes and mechanisms that underpin weight regain after weight loss and comment on future strategies to address them. Maintenance of body weight is regulated by the interaction of a number of processes, encompassing homeostatic, environmental and behavioural factors. In homeostatic regulation, the hypothalamus plays a central role in integrating signals regarding food intake, energy balance and body weight while an 'obesogenic' environment and behavioural patterns exert effects on the amount and type of food intake and physical activity. The roles of other environmental factors are also now being considered including sleep debt and iatrogenic effects of medications, many of which warrant further investigation. Unfortunately, physiological adaptations to weight loss favour weight regain. These changes include perturbations in the levels of circulating appetite-related hormones and energy homeostasis, in addition to alterations in nutrient metabolism and subjective appetite. To maintain weight loss, individuals must adhere to behaviours that counteract physiological adaptations and other factors favouring weight regain. It is difficult to overcome physiology with behaviour. Weight loss medications and surgery change the physiology of body weight regulation and are the best chance for long-term success. An increased understanding of the physiology of weight loss and regain will underpin the development of future strategies to support overweight and obese individuals in their efforts to achieve and maintain weight loss.International Journal of Obesity accepted article preview online, 21 April 2015. doi:10.1038/ijo.2015.59.
    International journal of obesity (2005) 04/2015; DOI:10.1038/ijo.2015.59 · 5.39 Impact Factor
  • Source
    Journal of Diabetes & Metabolism 03/2015; 6(3):509. DOI:10.4172/2155-6156.1000509
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amylin secretion is increased parallel to insulin in obese subjects. Despite their marked obesity, a state of relative hypoinsulinemia occurs in children with Prader-Willi syndrome (PWS). Based on the hypothesis that amylin levels may be relatively low in PWS children, contributing to their excessive appetite, we studied amylin levels after oral glucose loading in children with PWS and overweight controls. Plasma levels of amylin, glucagon, insulin, and glucose were measured at 0, 30, 60, 90, and 120 min after a glucose challenge in children with PWS (n = 18) and overweight controls (n = 25); the relationships among the variables were investigated in these two groups. Amylin levels were significantly correlated with insulin during fasting and during the oral glucose tolerance test in both groups. Amylin levels between 0 and 60 min after glucose loading were statistically different between the two groups. They were lower in children with PWS than in the controls between 0 and 30 min after glucose loading. The relatively low levels of amylin, compared to those in overweight controls, during the early phase of glucose loading in patients with PWS, may contribute, in part, to the excessive appetite of PWS patients as compared to the overweight controls.
    Yonsei medical journal 03/2011; 52(2):257-62. DOI:10.3349/ymj.2011.52.2.257 · 1.26 Impact Factor

Preview

Download
0 Downloads