Article

Vertebrate heart growth is regulated by functional antagonism between Gridlock and Gata5

Department of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2007; 104(35):14008-13. DOI: 10.1073/pnas.0702240104
Source: PubMed

ABSTRACT Embryonic organs attain their final dimensions through the generation of proper cell number and size, but the control mechanisms remain obscure. Here, we establish Gridlock (Grl), a Hairy-related basic helix-loop-helix (bHLH) transcription factor, as a negative regulator of cardiomyocyte proliferative growth in zebrafish embryos. Mutations in grl cause an increase in expression of a group of immediate-early growth genes, myocardial genes, and development of hyperplastic hearts. Conversely, cardiomyocytes with augmented Grl activity have diminished cell volume and fail to divide, resulting in a marked reduction in heart size. Both bHLH domain and carboxyl region are required for Grl negative control of myocardial proliferative growth. These Grl-induced cardiac effects are counterbalanced by the transcriptional activator Gata5 but not Gata4, which promotes cardiomyocyte expansion in the embryo. Biochemical analyses show that Grl forms a complex with Gata5 through the carboxyl region and can repress Gata5-mediated transcription via the bHLH domain. Hence, our studies suggest that Grl regulates embryonic heart growth via opposing Gata5, at least in part through their protein interactions in modulating gene expression.

0 Followers
 · 
171 Views
  • Source
    • "Whole mount in situ hybridizations were carried out as described (Zhong et al., 2001) using antisense ribonucleotide probes for nkx2.5, cmlc2, vmhc, scl, myoD and insulin. Immunofluorescence was performed as described (Jia et al., 2007) using primary anti-phosphorylated histone H3 antibody (1:100; Santa Cruz Biotechnology) and secondary antibody Alexa Fluor 555 donkey anti-rabbit conjugate (1:200; Molecular Probes). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a robust in vivo small-molecule screen that modulates heart size and cardiomyocyte generation in zebrafish. Three structurally related compounds (Cardionogen-1 to Cardionogen-3) identified from our screen enlarge the size of the developing heart via myocardial hyperplasia. Increased cardiomyocyte number in Cardionogen-treated embryos is due to expansion of cardiac progenitor cells. In zebrafish embryos and murine embryonic stem (ES) cells, Cardionogen treatment promotes cardiogenesis during and after gastrulation, whereas it inhibits heart formation before gastrulation. Cardionogen-induced effects can be antagonized by increasing Wnt/β-catenin signaling activity. We demonstrate that Cardionogen inhibits Wnt/β-catenin-dependent transcription in murine ES cells and zebrafish embryos. Cardionogen can rescue Wnt8-induced cardiomyocyte deficiency and heart-specific phenotypes during development. These findings demonstrate that in vivo small-molecule screens targeting heart size can reveal compounds with cardiomyogenic effects and identify underlying target pathways.
    Chemistry & biology 12/2011; 18(12):1658-68. DOI:10.1016/j.chembiol.2011.09.015 · 6.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NDRG4 is a novel member of the NDRG family (N-myc downstream-regulated gene). The roles of NDRG4 in development have not previously been evaluated. We show that, during zebrafish embryonic development, ndrg4 is expressed exclusively in the embryonic heart, the central nervous system (CNS) and the sensory system. Ndrg4 knockdown in zebrafish embryos causes a marked reduction in proliferative myocytes and results in hypoplastic hearts. This growth defect is associated with cardiac phenotypes in morphogenesis and function, including abnormal heart looping, inefficient circulation and weak contractility. We reveal that ndrg4 is required for restricting the expression of versican and bmp4 to the developing atrioventricular canal. This constellation of ndrg4 cardiac defects phenocopies those seen in mutant hearts of heartstrings (hst), the tbx5 loss-of-function mutants in zebrafish. We further show that ndrg4 expression is significantly decreased in hearts with reduced tbx5 activities. Conversely, increased expression of tbx5 that is due to tbx20 knockdown leads to an increase in ndrg4 expression. Together, our studies reveal an essential role of ndrg4 in regulating proliferation and growth of cardiomyocytes, suggesting that ndrg4 may function downstream of tbx5 during heart development and growth.
    Developmental Biology 06/2008; 317(2):486-96. DOI:10.1016/j.ydbio.2008.02.044 · 3.64 Impact Factor
Show more

Preview

Download
0 Downloads
Available from