Article

Identification of novel bradykinin-potentiating peptides (BPPs) in the venom gland of a rattlesnake allowed the evaluation of the structure-function relationship of BPPs.

Center for Applied Toxinology, Instituto Butantan, São Paulo, SP, Brazil.
Biochemical Pharmacology (Impact Factor: 4.58). 12/2007; 74(9):1350-60. DOI: 10.1016/j.bcp.2007.07.014
Source: PubMed

ABSTRACT Aiming to extend the knowledge about the diversity of bradykinin-potentiating peptides (BPPs) and their precursor proteins, a venom gland cDNA library from the South American rattlesnake (Crotalus dursissus terrificus, Cdt) was screened. Two novel homologous cDNAs encoding the BPPs precursor protein were cloned. Their sequence contain only one single longer BPP sequence with the typical IPP-tripeptide, and two short potential BPP-like molecules, revealing a unique structural organization. Several peptide sequences structurally similar to the BPPs identified in the precursor protein from Cdt and also from others snakes, were chemically synthesized and were bioassayed both in vitro and in vivo, by means of isolated smooth muscle preparations and by measurements of blood pressure in anaesthetized rats, respectively. We demonstrate here that a pyroglutamyl residue at the N-terminus with a high content of proline residues, even with the presence of a IPP moiety characteristic of typical BPPs, are not enough to determine a bradykinin-potentiating activity to these peptides. Taken together, our results indicate that the characterization of the BPPs precursor proteins and identification of characteristic glutamine residues followed by proline-rich peptide sequences are not enough to predict if these peptides, even with a pyroglutamyl residue at the N-terminus, will present the typical pharmacological activities described for the BPPs.

0 Bookmarks
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of 12 weekly infusions of solanezumab, an anti-β-amyloid (Aβ) antibody, in patients with mild-to-moderate Alzheimer's disease. Cognitive measures were also obtained. In this phase 2, randomized, double-blind, placebo-controlled clinical trial, 52 patients with Alzheimer's disease received placebo or antibody (100 mg every 4 weeks, 100 mg weekly, 400 mg every 4 weeks, or 400 mg weekly) for 12 weeks. Safety and biomarker evaluations continued until 1 year after randomization. Both magnetic resonance imaging and cerebrospinal fluid (CSF) examinations were conducted at baseline and after the active treatment period. The Aβ concentrations were measured in plasma and CSF, and the Alzheimer's Disease Assessment Scale-cognitive portion was administered. Clinical laboratory values, CSF cell counts, and magnetic resonance imaging scans were unchanged by treatment, and no adverse events could be clearly related to antibody administration. Total (bound to antibody and unbound) Aβ(1-40) and Aβ(1-42) in plasma increased in a dose-dependent manner. Antibody treatment similarly increased total Aβ(1-40) and Aβ(1-42) in CSF. For patients taking 400 mg weekly, antibody treatment decreased unbound Aβ(1-40) in CSF (P < .01), but increased unbound Aβ(1-42) in CSF in a dose-dependent manner. The Alzheimer's Disease Assessment Scale-cognitive portion was unchanged after the 12-week antibody administration. Antibody administration was well tolerated with doses up to 400 mg weekly. The dose-dependent increase in unbound CSF Aβ(1-42) suggests that this antibody may shift Aβ equilibria sufficiently to mobilize Aβ(1-42) from amyloid plaques.
    Alzheimer's & dementia: the journal of the Alzheimer's Association 06/2012; 8(4):261-71. · 14.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Baroreflex sensitivity is disturbed in many people with cardiovascular diseases such as hypertension. Brain deficiency of nitric oxide (NO), which is synthesized by NO synthase (NOS) in the citrulline-NO cycle (with argininosuccinate synthase (ASS) activity being the rate-limiting step), contributes to impaired baroreflex. We recently showed that a decapeptide isolated from Bothrops jararaca snake venom, denoted Bj-PRO-10c, exerts powerful and sustained antihypertensive activity. Bj-PRO-10c promoted vasodilatation dependent on the positive modulation of ASS activity and NO production in the endothelium, and also acted on the central nervous system, inducing the release of GABA and glutamate, two important neurotransmitters in the regulation of autonomic systems. We evaluated baroreflex function using the regression line obtained by the best-fit points of measured heart rate (HR) and mean arterial pressure (MAP) data from spontaneously hypertensive rats (SHRs) treated with Bj-PRO-10c. We also investigated molecular mechanisms involved in this effect, both in vitro and in vivo. Bj-PRO-10c mediated an increase in baroreflex sensitivity and a decrease in MAP and HR. The effects exerted by the peptide include an increase in the gene expression of endothelial NOS and ASS. Bj-PRO-10c-induced NO production depended on intracellular calcium fluxes and the activation of a G(i/o)-protein-coupled metabotropic receptor. Bj-PRO-10c induced NO production and the gene expression of ASS and endothelial NOS in the brains of SHRs, thereby improving baroreflex sensitivity. Bj-PRO-10c may reveal novel approaches for treating diseases with impaired baroreflex function.
    Hypertension Research 12/2010; 33(12):1283-8. · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Venom glands of some snakes synthesize bradykinin-potentiating peptides (BPP's) which increase bradykinin-induced hypotensive effect and decrease angiotensin I vasopressor effect by angiotensin-converting enzyme (ACE) inhibition. The present study shows a new BPP (BPP-Cdc) isolated from Crotalus durissus cascavella venom: Pro-Asn-Leu-Pro-Asn-Tyr-Leu-Gly-Ile-Pro-Pro. Although BPP-Cdc presents the classical sequence IPP in the C-terminus, it has a completely atypical N-terminal sequence, which shows very low homology with all other BPPs isolated to date. The pharmacological effects of BPP-Cdc were compared to BBP9a from Bothrops Jararaca and captopril. BPP-Cdc (1μM) significantly increased BK-induced contractions (BK; 1μM) on the guinea pig ileum by 267.8% and decreased angiotensin I-induced contractions (AngI; 10nM) by 62.4% and these effects were not significantly different from those of BPP9a (1μM) or captopril (200nM). Experiments with 4-week hypertensive 2K-1C rats show that the vasopressor effect of AngI (10ng) was decreased by 50μg BPP-Cdc (69.7%), and this result was similar to that obtained with 50μg BPP9a (69.8%). However, the action duration of BPP-Cdc (60 min) was 2 times greater than that of BPP-9a (30 min). On the other hand, the hypotensive effect of BK (250ng) was significantly increased by 176.6% after BPP-Cdc (50μg) administration, value 2.5 times greater than that obtained with BPP9a administered at the same doses (71.4%). In addition, the duration of the action of BPP-Cdc (120 min) was also at least 4 times greater than that of BPP-9a (30 min). Taken together, these results suggest that BPP-Cdc presents more selective action on arterial blood system than BPP9a. Besides the inhibition of ACE, it may present other mechanisms of action yet to be elucidated.
    Toxicon : official journal of the International Society on Toxinology. 08/2014;

Full-text (2 Sources)

View
81 Downloads
Available from
Jun 10, 2014