Both mucosal and systemic routes of immunization with the live, attenuated NYVAC/simian immunodeficiency virus SIV(gpe) recombinant vaccine result in gag-specific CD8(+) T-cell responses in mucosal tissues of macaques.

Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892, USA.
Journal of Virology (Impact Factor: 5.08). 12/2002; 76(22):11659-76. DOI: 10.1128/JVI.76.22.11659-11676.2002
Source: PubMed

ABSTRACT As most human immunodeficiency virus (HIV) infection occurs via mucosal surfaces, an important goal of vaccination may be the induction of virus-specific immune responses at mucosal sites to contain viral infection early on. Here we designed a study in macaques carrying the major histocompatibility complex class I Mamu-A(*)01 molecule to assess the capacity of the highly attenuated poxvirus NYVAC/simian immunodeficiency virus (SIV) SIV(gpe) vaccine candidate administered by the intranasal, intramuscular, or intrarectal route to induce mucosal immunity. All macaques, including one naive macaque, were exposed to SIV(mac251) by the intrarectal route and sacrificed 48 h after infection. The kinetics of immune response at various time points following immunization with NYVAC/SIV(gpe) and the anamnestic response to SIV(mac251) at 48 h after challenge were assessed in blood, in serial rectal and vaginal biopsy samples, and in tissues at euthanasia with an SIV(mac) Gag-specific tetramer. In addition, at euthanasia, antigen-specific cells producing gamma interferon or tumor necrosis factor alpha from the jejunum lamina propria were quantified in all macaques. Surprisingly, antigen-specific CD8(+) T cells were found in the mucosal tissues of all immunized macaques regardless of whether the vaccine was administered by a mucosal route (intranasal or intrarectal) or systemically. In addition, following mucosal SIV(mac251) challenge, antigen-specific responses were mainly confined to mucosal tissues, again regardless of the route of immunization. We conclude that immunization with a live vector vaccine results in the appearance of CD8(+) T-cell responses at mucosal sites even when the vaccine is delivered by nonmucosal routes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Defensins display immunostimulatory activities including a chemotactic effect for T lymphocytes/immature dendritic cells and secretion of pro-inflammatory cytokines suggest their role in bridging innate and adaptive immunity. We hypothesized whether defensins with separately emulsified HIV-1 immunogen would elicit peptide-specific systemic and mucosal antibody response in mice. The HIV-1 peptide alone in microsphere showed low peptide-specific antibody response in sera and different washes, while the presence of defensins markedly increased the antibody peak titre both in sera (102,400-409,600) (p < 0.05) and in washes (800-25,600) (p < 0.001). Defensins with HIV-1 peptide were showing 43.0-83.2 % and 38.7-72.3 % in vitro neutralization against laboratory isolates in serum and lavage samples, respectively, higher than HIV-1 peptide alone. Our findings may have implications in the development of new mucosal adjuvant for AIDS vaccination.
    Immunologic Research 05/2013; · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The MPER of gp41 of HIV-1 has received great attention and is widely recognized as a promising target for the development of AIDS vaccine. We investigated the ability of trirepeat of ELDKWA sequence of gp41 antigen with defensins in liposome using multiple-shot immunization strategy in the mice model. The designed was used to enhance the immunogenicity and exposure of MPER in its native conformation for the induction of MPER-specific HIV-1 neutralizing antibodies. To characterize, we estimated the antibody levels (IgG/IgA) in serum as well as in lung, intestinal, vaginal and rectal washes till day 120 in outbred and inbred (H-2(b) and H-2(d)) mice using liposome as delivery vehicle. The representative sera and washes were also tested for in vitro neutralization with CCR5-tropic Indian HIV-1 primary isolates. We observed that the modified HIV antigen containing trirepeat of ELDKWA with defensins was showing significantly (p<0.001) higher IgG/IgA antibody titre (102,400-204,800) in sera as well as in different mucosal washes (1600-6400) than standard HIV-1 antigen. Furthermore, sera from the modified HIV-1 antigen with defensins found to exhibit higher neutralizing activities (ranging from 59.3% to 84.6%) than the standard HIV-1 antigen. These results show that the induction of MPER-specific HIV-1 neutralizing antibodies could be achieved through a rationally designed vaccine strategy.
    Immunobiology 11/2013; · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry.
    Frontiers in Immunology 01/2014; 5:202.


Available from
May 27, 2014