Phosphorylation-dependent antagonism of sumoylation derepresses progesterone receptor action in breast cancer cells

University of Minnesota Duluth, Duluth, Minnesota, United States
Molecular Endocrinology (Impact Factor: 4.2). 01/2008; 21(12):2890-906. DOI: 10.1210/me.2007-0248
Source: PubMed

ABSTRACT Progesterone receptors (PRs) mediate proliferation during breast development and contribute to breast cancer progression, in part by synergizing with peptide growth factors. We have previously identified PR Ser294 as a key site for direct regulation of PR location, activity, and turnover in response to phosphorylation events. Herein, we sought to better understand how hormonal cross talk alters PR function. We demonstrate that progestins (R5020 and RU486) induce rapid (15 min) sumoylation of PR Lys388; sumoylation represses PR transcriptional activity on selected progesterone response element-driven and endogenous promoters and retards ligand-induced PR down-regulation. Consistent with this finding, we show that stabilized but weakly active phospho-mutant S294A PRs are heavily sumoylated. Conversely, desumoylated PR, created by mutation of PR Lys388 (K388R) or by overexpression of sentrin (SUMO)-specific protease desumoylating enzymes, are hypersensitive to low progestin concentrations. Combination of K388R and S294A mutations (KRSA double-mutant PR) rescues both transcription and turnover of impaired phospho-mutant (S294A) receptors. Notably, phosphorylation events antagonize PR-B but not PR-A sumoylation. Treatment of cells with epidermal growth factor or transient expression of activated mitogen-activated protein/ERK kinase kinase or cyclin-dependent protein kinase 2 induces PR-B Ser294 phosphorylation and blocks PR-B sumoylation, thereby derepressing receptor activity; PR-A is resistant to these events. Modulation of reversible PR sumoylation in response to diverse hormonal signals provides a mechanism for rapid isoform-specific changes in hormone responsiveness. In the context of elevated protein kinase activities, such as during mammary gland development or breast cancer progression, phosphorylated PR-B may be undersumoylated, transcriptionally hyperactive, and unstable/undetectable.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen receptor-alpha positive (ER(+)) breast cancers comprise the majority of human breast cancers, but molecular mechanisms underlying this subtype of breast cancers remain poorly understood. Here, we show that ER(+) mammary luminal tumors arising in Tip30(-/-)MMTV-Neu mice exhibited increased enrichment of luminal progenitor gene signature. Deletion of the Tip30 gene increased proportion of mammary stem and progenitor cell populations, and raised susceptibility to ER(+) mammary luminal tumors in female Balb/c mice. Moreover, Tip30(-/-) luminal progenitors displayed increases in propensity to differentiate to mature ER(+) luminal cells and FoxA1 expression. Knockdown of FoxA1 expression in Tip30(-/-) progenitors by shRNA specific for FoxA1 reduced their differentiation toward ER(+) mature luminal cells. Taken together, our results suggest that TIP30 is a key regulator for maintaining ER(+) and ER(-)luminal pools in the mammary luminal lineage, and loss of it promotes expansion of ER(+) luminal progenitors and mature cells and ER(+) mammary tumorigenesis.
    Cell Death & Disease 05/2014; 5(5):e1242. DOI:10.1038/cddis.2014.224 · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Progesterone and progesterone receptors (PR) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two progesterone receptor isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential cross-talk with growth factor signaling pathways, and distinct post-translational modifications and cofactor binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.
    Journal of Molecular Endocrinology 01/2015; 54(2). DOI:10.1530/JME-14-0252 · 3.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant peripheral nerve sheath tumors (MPNSTs) are genetically diverse, aggressive sarcomas that occur sporadically or in association with neurofibromatosis type 1 syndrome. Reduced TP53 gene expression and amplification/overexpression of the epidermal growth factor receptor (EGFR) gene occur in MPNST formation. We focused on determining the cooperativity between reduced TP53 expression and EGFR overexpression for Schwann cell transformation in vitro (immortalized human Schwann cells) and MPNST formation in vivo (transgenic mice). Human gene copy number alteration data, microarray expression data, and TMA analysis indicate that TP53 haploinsufficiency and increased EGFR expression co-occur in human MPNST samples. Concurrent modulation of EGFR and TP53 expression in HSC1λ cells significantly increased proliferation and anchorage-independent growth in vitro. Transgenic mice heterozygous for a Trp53-null allele and overexpressing EGFR in Schwann cells had a significant increase in neurofibroma and grade 3 PNST (MPNST) formation compared with single transgenic controls. Histological analysis of tumors identified a significant increase in pAkt expression in grade 3 PNSTs compared with neurofibromas. Array comparative genome hybridization analysis of grade 3 PNSTs identified recurrent focal regions of chromosomal gains with significant enrichment in genes involved in extracellular signal-regulated kinase 5 signaling. Collectively, altered p53 expression cooperates with overexpression of EGFR in Schwann cells to enhance in vitro oncogenic properties and tumorigenesis and progression in vivo.
    American Journal Of Pathology 05/2014; DOI:10.1016/j.ajpath.2014.04.006 · 4.60 Impact Factor