Local origin and activity-dependent generation of nestin-expressing protoplasmic astrocytes in CA1.

Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
Brain Structure and Function (Impact Factor: 4.57). 08/2007; 212(1):19-35. DOI: 10.1007/s00429-007-0141-5
Source: PubMed

ABSTRACT Since reports that precursor cells in the adult subventricular zone (SVZ) contribute to regenerative neuro- and gliogenesis in CA1, we wondered whether a similar route of migration might also exist under physiological conditions. Permanent labeling of SVZ precursor cells with a lentiviral vector for green fluorescent protein did not reveal any migration from the SVZ into CA1 in the intact murine brain. However, in a nestin-GFP reporter mouse we found proliferating cells within the corpus callosum/alveus region expressing nestin and glial fibrillary acidic protein similar to precursor cells in the neighboring neurogenic region of the adult dentate gyrus. Within 3 weeks of BrdU administration, BrdU-positive nestin-GFP-expressing protoplasmic astrocytes emerged in CA1. Similar to precursor cells isolated from the dentate gyrus and the SVZ, nestin-GFP-expressing cells from corpus callosum/alveus were self-renewing and multipotent in vitro, whereas cells isolated from CA1 were not. Nestin-GFP-expressing cells in CA1 differentiated into postmitotic astrocytes characterized by S100beta expression. No new neurons were found in CA1. The number of nestin-GFP-expressing astrocytes in CA1 was increased by environmental enrichment. We conclude that astrogenesis in CA1 is influenced by environmental conditions. However, SVZ precursor cells do not contribute to physiological cellular plasticity in CA1.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the existence of newborn neurons had originally been suggested, but not broadly accepted, based on studies in adult rodent brains, the presence of an active neurogenesis process in adult homoeothermic vertebrates was first firmly established in songbirds. Adult neurogenesis was initially studied with the tritiated thymidine technique, later replaced by the injection and detection of the marker of DNA replication 5-bromo-2'-deoxyuridine (BrdU). More recently, various endogenous markers were used to identify young neurons or cycling neuronal progenitors. We review here the respective advantages and pitfalls of these different approaches in birds, with specific reference to the microtubule-associated protein, doublecortin (DCX), that has been extensively used to identify young newly born neurons in adult brains. All these techniques of course have limitations. Exogenous markers label cells replicating their DNA only during a brief period and it is difficult to select injection doses that would exhaustively label all these cells without inducing DNA damage that will also result in some form of labeling during repair. On the other hand, specificity of endogenous markers is difficult to establish due to problems related to the specificity of antibodies (these problems can be, but are not always, addressed) and more importantly because it is difficult, if not impossible, to prove that a given marker exhaustively and specifically labels a given cell population. Despite these potential limitations, these endogenous markers and DCX staining in particular clearly represent a useful approach to the detailed study of neurogenesis especially when combined with other techniques such as BrdU. J. Comp. Neurol., 2014. © 2014 Wiley Periodicals, Inc.
    The Journal of Comparative Neurology 12/2014; 522(18). DOI:10.1002/cne.23661 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult neurogenesis is an exceptional feature of the adult brain and in an intriguing way bridges between neuronal and glial neurobiology. Essentially, all classes of glial cells are directly or indirectly linked to this process. Cells with astrocytic features, for example, serve as radial glia-like stem cells in the two neurogenic regions of the adult brain, the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles, producing new neurons, create a microenvironment permissive for neurogenesis, and are themselves generated alongside the new neurons in an associated but independently regulated process. Oligodendrocytes are generated from precursor cells intermingled with those generating neurons in an independent lineage. NG2 cells have certain precursor cell properties and are found throughout the brain parenchyma. They respond to extrinsic stimuli and injury but do not generate neurons even though they can express some preneuronal markers. Microglia have positive and negative regulatory effects as constituents of the "neurogenic niche". Ependymal cells play incompletely understood roles in adult neurogenesis, but under certain conditions might exert (back-up) precursor cell functions. Glial contributions to adult neurogenesis can be direct or indirect and are mediated by mechanisms ranging from gap-junctional to paracrine and endocrine. As the two neurogenic regions differ between each other and both from the non-neurogenic rest of the brain, the question arises in how far regionalization of both the glia-like precursor cells as well as of the glial cells determines site-specific "neurogenic permissiveness." In any case, however, "neurogenesis" appears to be an essentially glial achievement.
    Glia 02/2012; 60(2):159-74. DOI:10.1002/glia.21247 · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex) sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX) is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise), also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive "neuroblasts" exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.
    PLoS ONE 10/2011; 6(10):e25760. DOI:10.1371/journal.pone.0025760 · 3.53 Impact Factor

Michael Synowitz