The prevalence and incidence of neurocognitive impairment in the HAART era

Harvard University, Cambridge, Massachusetts, United States
AIDS (Impact Factor: 6.56). 09/2007; 21(14):1915-21. DOI: 10.1097/QAD.0b013e32828e4e27
Source: PubMed

ABSTRACT HAART suppresses HIV viral replication and restores immune function. The effects of HAART on neurological disease are less well understood. The aim of this study was to assess the prevalence and incidence of neurocognitive impairment in individuals who initiated HAART as part of an AIDS clinical trial.
A prospective cohort study of HIV-positive patients enrolled in randomized antiretroviral trials, the AIDS Clinical Trials Group (ACTG) Longitudinal Linked Randomized Trials (ALLRT) study.
We examined the association between baseline and demographic characteristics and neurocognitive impairment among 1160 subjects enrolled in the ALLRT study.
A history of immunosuppression (nadir CD4 cell count < 200 cells/microl) was associated with an increase in prevalent neurocognitive impairment. There were no significant virological and immunological predictors of incident neurocognitive impairment. Current immune status (low CD4 cell count) was associated with sustained prevalent impairment.
The association of previous advanced immunosuppression with prevalent and sustained impairment suggests that there is a non-reversible component of neural injury that tracks with a history of disease progression. The association of sustained impairment with worse current immune status (low CD4 cell count) suggests that restoring immunocompetence increases the likelihood of neurocognitive recovery. Finally, the lack of association between incident neurocognitive impairment and virological and immunological indicators implies that neural injury continues in some patients regardless of the success of antiretroviral therapy on these laboratory measures.


Available from: Thomas D Parsons, Apr 18, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 is a global catastrophe, and is exceedingly prevalent in Sub-Saharan Africa. HIV-associated neurocognitive disorder is characterized by symptoms such as motor impairments, a decline in cognition, and behavioural irregularities. The aim of this study was to provide insight into the fundamental behavioural and histopathological mechanisms underlying the development and progression of HIV-1 neuropathology. Using stereotaxic techniques, Tat protein Clade B (1 μg/μl, 10 μl) was injected bilaterally into the dorsal hippocampus of male Sprague-Dawley rats. The Morris water maze (MWM) and novel object recognition test (NORT) were used to assess spatial learning and recognition memory, respectively. Haematoxylin and eosin staining was used to identify the histopathological changes. A highly significant increase in latency to reach the hidden platform in the MWM implied that noteworthy hippocampal damage had occurred. Severe behavioural deficits were also observed in the NORT where the Tat-injected group showed a greater preference for a familiar object over a novel one. This damage was confirmed by the histopathological changes (increased astrogliosis, cells becoming eosinophilic and a significant reduction in the pyramidal cell layer) observed in the hippocampus. Additionally, increases in the hippocampal mass and protein were observed, consistent with the structural alterations. This study highlights the relationship between hippocampal-associated behavioural changes and histologic alterations following stereotaxic intra-hippocampal administration of Tat protein in rats. The implications of this study may positively impact the fields of immunology and neuroscience by encouraging future researchers to consider novel strategies to understand the complexities of the pathogenesis of HIV-associated neurocognitive disorder.
    Behavioral and Brain Functions 12/2015; 11(1). DOI:10.1186/s12993-014-0047-3 · 2.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nearly 70% of HIV-1-infected individuals suffer from HIV-associated neurocognitive disorders (HAND). HIV-1 transactivator of transcription (Tat) protein is known to synergize with abused drugs and exacerbate the progression of central nervous system (CNS) pathology. Cumulative evidence suggest that the HIV-1 Tat protein exerts the neurotoxicity through interaction with human dopamine transporter (hDAT) in the CNS. Through computational modeling and molecular dynamics (MD) simulations, we develop a three-dimensional (3D) structural model for HIV-1 Tat binding with hDAT. The model provides novel mechanistic insights concerning how HIV-1 Tat interacts with hDAT and inhibits dopamine uptake by hDAT. In particular, according to the computational modeling, Tat binds most favorably with the outward-open state of hDAT. Residues Y88, K92, and Y470 of hDAT are predicted to be key residues involved in the interaction between hDAT and Tat. The roles of these hDAT residues in the interaction with Tat are validated by experimental tests through site-directed mutagensis and dopamine uptake assays. The agreement between the computational and experimental data suggests that the computationally predicted hDAT-Tat binding mode and mechanistic insights are reasonable and provide a new starting point to design further pharmacological studies on the molecular mechanism of HIV-1-associated neurocognitive disorders.
    ACS Chemical Neuroscience 02/2015; DOI:10.1021/acschemneuro.5b00001 · 4.21 Impact Factor
  • Source
    01/2014; 2(1):2. DOI:10.1186/2049-9256-2-2