Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model.

Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.89). 12/2007; 323(2):438-49. DOI: 10.1124/jpet.107.129551
Source: PubMed

ABSTRACT Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate essential genes. Because complete ADNP deficiency is embryonic lethal, the outcome of partial ADNP deficiency was examined. ADNP(+/-) mice exhibited cognitive deficits, significant increases in phosphorylated tau, tangle-like structures, and neurodegeneration compared with ADNP(+/+) mice. Increased tau hyperphosphorylation is known to cause memory impairments in neurodegenerative diseases associated with tauopathies, including the most prevalent Alzheimer's disease. The current results suggest that ADNP is an essential protein for brain function and plays a role in normal cognitive performance. ADNP-deficient mice offer an ideal paradigm for evaluation of cognitive enhancers. NAP (NAPVSIPQ) is a peptide derived from ADNP that interacts with microtubules and provides potent neuroprotection. NAP treatment partially ameliorated cognitive deficits and reduced tau hyperphosphorylation in the ADNP(+/-) mice. NAP is currently in phase II clinical trials assessing effects on mild cognitive impairment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We set out to identify NAP (davunetide) analogs, providing neuroprotection and reducing tau pathology, specifically addressing protection against protein misfolding. NAP (NAPVSIPQ, intranasal formulation AL-108) is a drug candidate that (1) had a statistically significant impact on two measures, namely digit span and delayed-match-to-sample, tests of verbal recall and visual working memory, respectively, in patient population of mild cognitive impairment [preceding Alzheimer's disease (AD)] and (2) protected functional activities of daily living in schizophrenia patients. Previous preclinical studies have shown that stabilization of NAP by replacement of all L-amino acids by D-amino acids resulted in an active peptide, D-NAP. Other NAP mimetics are now explored. A new NAP analog was designed that included replacement of the proline residues by alpha-aminoisobutyric acid to enhance β-sheet breaker characteristics, thereby reducing protein misfolding. Three lines of investigations were chosen: (1) protection against the AD-associated amyloid β (1-42), Aβ1-42, peptide toxicity in cell cultures; (2) inhibition of AD-associated tau aggregation in vitro; and (3) cognitive protection in a mouse model of deficiencies of the NAP parent protein, activity-dependent neuroprotective protein (ADNP), exhibiting tau pathology and neurodegeneration. NAP alpha-aminoisobutyric acid (IsoNAP) protected neurons against AD-associated Aβ1-42-toxicity, inhibited the aggregation of the tau-derived peptide VQIVYK (important for the aggregation of tau into paired helical filaments, which form the tangles found in AD and related disorders), and protected cognitive functions in a model of ADNP deficiency. With AD being the major tauopathy, novel NAP derivatives that reduce tauopathy and provide neuroprotection as well as cognitive protection are of scientific and clinical interest.
    Journal of Molecular Neuroscience 01/2014; 52(1):1-9. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tauopathy, a major pathology in Alzheimer's disease, is also found in ∼50% of frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively). While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP) is essential for brain formation in the mouse, with ADNP+/- mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (∼3-fold transcripts) in the cerebral cortex of young transgenic mice (∼disease onset), but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Here, Brahma (Brm), a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF)-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is warranted.
    PLoS ONE 01/2014; 9(1):e87383. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the high heritability of autism spectrum disorders (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities, a genetic diagnosis can be established in only a minority of patients. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, as in Rett and fragile-X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next-generation sequencing, for the large majority of cases no molecular diagnosis can be established. Here, we report ten patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD-associated genes known to date.
    Nature Genetics 02/2014; · 35.21 Impact Factor