Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel Transgenic mouse model

Laboratory of Experimental Pedagogy, Aristotle University of Thessaloniki, Saloníki, Central Macedonia, Greece
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 12/2007; 323(2):438-49. DOI: 10.1124/jpet.107.129551
Source: PubMed

ABSTRACT Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate essential genes. Because complete ADNP deficiency is embryonic lethal, the outcome of partial ADNP deficiency was examined. ADNP(+/-) mice exhibited cognitive deficits, significant increases in phosphorylated tau, tangle-like structures, and neurodegeneration compared with ADNP(+/+) mice. Increased tau hyperphosphorylation is known to cause memory impairments in neurodegenerative diseases associated with tauopathies, including the most prevalent Alzheimer's disease. The current results suggest that ADNP is an essential protein for brain function and plays a role in normal cognitive performance. ADNP-deficient mice offer an ideal paradigm for evaluation of cognitive enhancers. NAP (NAPVSIPQ) is a peptide derived from ADNP that interacts with microtubules and provides potent neuroprotection. NAP treatment partially ameliorated cognitive deficits and reduced tau hyperphosphorylation in the ADNP(+/-) mice. NAP is currently in phase II clinical trials assessing effects on mild cognitive impairment.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ADNP is a protein necessary for brain development, important for brain plasticity, cognitive and social functioning, characteristics that are all impaired in autism and in the Adnp(+/-) mouse model, in a sex-dependent manner. ADNP was originally discovered as a protein that is secreted from glial cells in response to vasoactive intestinal peptide (VIP). VIP is a major neuroprotective peptide in the CNS and PNS and was also associated with social recognition in rodents and aggression, pair-bonding and parental behaviors in birds. Comparative sequence alignment revealed high evolutionary conservation of ADNP in Chordata. Despite its importance in brain function, ADNP has never been studied in birds. Zebra finches (Taeniopygia guttata) are highly social songbirds that have a sexually-dichotomous anatomical brain structure, with males demonstrating a developed song system, presenting a model to study behavior and potential sexually-dependent fundamental differences. Here, using quantitative real time polymerase chain reaction (qRT-PCR), we discovered sexually-dichotomous and age related differences in ADNP mRNA expression in three different regions of the song bird brain-cerebellum, cerebrum, and brain stem. Higher levels of ADNP mRNA were specifically found in young male compared to the female cerebrum, while aging caused a significant 2 and 3-fold decrease in the female and male cerebrum, respectively. Furthermore, a comparison between the three tested brain regions revealed unique sex-dependent ADNP mRNA distribution patterns, affected by aging. Future studies are aimed at deciphering the function of ADNP in birds, toward a better molecular understanding of sexual dichotomy in singing behavior in birds. Copyright © 2015. Published by Elsevier Inc.
    Peptides 04/2015; DOI:10.1016/j.peptides.2015.04.008 · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anesthetic doses of ketamine induce apoptosis, as well as gene expression of activity-dependent neuroprotective protein (ADNP), a putative homeodomain transcription factor in rat pups (P7). This study investigated if ketamine induced ADNP protein in a dose-dependent manner in vitro and in vivo using primary cultures of cortical neurons and neonatal pups (P7). In vivo immunohistochemistry demonstrated a sub-anesthetic dose of ketamine increased ADNP in the somatosensory cortex which was previously identified to be damaged by repeated exposure to anesthetic doses of ketamine. Administration of low-dose ketamine prior to full sedation prevented caspase-3 activation in the hippocampus and somatosensory cortex. Primary cultures of cortical neurons treated with ketamine (10 μM - 10 mM) at 3 days-in-vitro (3 DIV) displayed a concentration-dependent decrease in expanded growth cones. Furthermore, neuronal production and localization of ADNP varied as a function of both ketamine concentration and length of exposure. Taken together, these data support the model that ADNP induction may be partially responsible for the efficacy of a low-dose ketamine pre-treatment in preventing ketamine-induced neuronal cell death. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience 01/2015; 290. DOI:10.1016/j.neuroscience.2014.12.076 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recent finding of activity-dependent neuroprotective protein (ADNP) as a protein decreased in serum of patients with Alzheimer's disease (AD) compared to controls, alongside with the discovery of ADNP mutations in autism and coupled with the original description of cancer mutations, ignited an interest for a comparative analysis of ADNP with other AD/autism/cancer-associated genes. We strive toward a better understanding of the molecular structure of key players in psychiatric/neurodegenerative diseases including autism, schizophrenia, and AD. This article includes data mining and bioinformatics analysis on the ADNP gene and protein, in addition to other related genes, with emphasis on recent literature. ADNP is discovered here as unique to chordata with specific autism mutations different from cancer-associated mutation. Furthermore, ADNP exhibits similarities to other cancer/autism-associated genes. We suggest that key genes, which shape and maintain our brain and are prone to mutations and are by in large unique to chordata. Furthermore, these brain-controlling genes, like ADNP, are linked to cell growth and differentiation, and under different stress conditions may mutate or exhibit expression changes leading to cancer propagation. Better understanding of these genes could lead to better therapeutics.
    Journal of Alzheimer's disease: JAD 11/2014; DOI:10.3233/JAD-142490 · 3.61 Impact Factor