Regulation of one-carbon metabolism in Arabidopsis: the N-terminal regulatory domain of cystathionine gamma-synthase is cleaved in response to folate starvation.

Laboratoire de Physiologie Cellulaire Végétale, Institut National de la Recherche Agronomique, Université Joseph Fourier Grenoble I, Grenoble, France.
Plant physiology (Impact Factor: 6.56). 11/2007; 145(2):491-503. DOI: 10.1104/pp.107.105379
Source: PubMed

ABSTRACT In all organisms, control of folate homeostasis is of vital importance to sustain the demand for one-carbon (C1) units that are essential in major metabolic pathways. In this study we induced folate deficiency in Arabidopsis (Arabidopsis thaliana) cells by using two antifolate inhibitors. This treatment triggered a rapid and important decrease in the pool of folates with significant modification in the distribution of C1-substituted folate coenzymes, suggesting an adaptive response to favor a preferential shuttling of the flux of C1 units to the synthesis of nucleotides over the synthesis of methionine (Met). Metabolic profiling of folate-deficient cells indicated important perturbation of the activated methyl cycle because of the impairment of Met synthases that are deprived of their substrate 5-methyl-tetrahydrofolate. Intriguingly, S-adenosyl-Met and Met pools declined during the initial period of folate starvation but were further restored to typical levels. Reestablishment of Met and S-adenosyl-Met homeostasis was concomitant with a previously unknown posttranslational modification that consists in the removal of 92 amino acids at the N terminus of cystathionine gamma-synthase (CGS), the first specific enzyme for Met synthesis. Rescue experiments and analysis of different stresses indicated that CGS processing is specifically associated with perturbation of the folates pool. Also, CGS processing involves chloroplastic serine-type proteases that are expressed in various plant species subjected to folate starvation. We suggest that a metabolic effector, to date unidentified, can modulate CGS activity in vivo through an interaction with the N-terminal domain of the enzyme and that removal of this domain can suppress this regulation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A new organic–inorganic hybrid SO4[C6H9N2O2S]2, has been synthesized and characterized by X–ray diffraction. This compound crystallizes in the orthorhombic system, spaces group Pbcn. In the title compound, the packing is stabilized by intermolecular N-H…O hydrogen bonds and π-π stacking interactions between the phenyl rings, linking the molecules into three-dimensional network. The in vitro antimicrobial activity of di (4-sulfamoyl-phenyl-ammonium) sulphate was determined by the broth dilution method against several strains selected to define their spectrum and potency. Here we show that the synthetic sulfanilamide exhibits promising antibacterial potency. High inhibition was also detected against Candida albicans. In this paper we firstly showed the antifungal activity of the sulfanilamide against two serious phytopathogenic fungi. Interestingly, the new compound was able to suppress mycelial growth as well as the spores germination of tested fungi, values of spore germination vary from 97.6% to 37.5% respectively for Botrytis cinerea and Fusarium species. The minimal inhibitory concentrations (MIC) ranging from 8 to 100 μg ml-1 and IC50 values varying from 5.81 to less than 100 μg ml-1), showed that the sulfanilamide sulphate had high activity against bacteria, yeast and fungi, compared to others published antifungal compounds.
    Microbiological Research 01/2013; · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptomic data for Sorghum propinquum, the wild-type sorghum, are limited in public databases. S. propinquum has a subterranean rhizome and transcriptome data will help in understanding the molecular mechanisms underlying rhizome formation. We sequenced the transcriptome of S. propinquum aerial-shoot and rhizome using an Illumina platform. More than 70 % of the genes in the S. propinquum genome were expressed in aerial-shoot and rhizome. The expression patterns of 1963 and 599 genes, including transcription factors, were specific or enriched in aerial-shoot and rhizome respectively, indicating their possible roles in physiological processes in these tissues. Comparative analysis revealed several cis-elements, ACGT box, GCCAC, GATC and TGACG box, which showed significantly higher abundance in aerial-shoot-specific genes. In rhizome-specific genes MYB and ROOTMOTIFTAPOX1 motifs, and 10 promoter and cytokinin-responsive elements were highly enriched. Of the S. propinquum genes, 27.9 % were identified as alternatively spliced and about 60 % of the alternative splicing (AS) events were tissue-specific, suggesting that AS played a crucial role in determining tissue-specific cellular function. The transcriptome data, especially the co-localized rhizome-enriched expressed transcripts that mapped to the publicly available rhizome-related quantitative trait loci, will contribute to gene discovery in S. propinquum and to functional studies of the sorghum genome. Deep transcriptome sequencing revealed a clear difference in the expression patterns of genes between aerial-shoot and rhizome in S. propinquum. This data set provides essential information for future studies into the molecular genetic mechanisms involved in rhizome formation.
    Plant Molecular Biology 10/2013; · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sulfur-containing essential amino acid methionine controls the level of important metabolites and processes in plants. In addition, methionine levels limit the nutritional quality of many crop plants. The level of methionine is regulated mainly by cystathionine γ-synthase (CGS), the first enzyme committed to its biosynthesis. Within our efforts to reveal factors that regulate CGS and methionine content in plants, we have analyzed how light regulates the transcript and protein level of Arabidopsis CGS (AtCGS). The expression of AtCGS is up-regulated in the light and reduced in the dark, independent of the diurnal cycle. Using tobacco plants overexpressing AtCGS, we have found that the light sensitive motives of the AtCGS gene are found within the coding sequence of AtCGS and not in its promoter, terminator or the untranslated regions of the gene. Sucrose can partially mimic the effect of light in dark grown plants while the addition of nitrogen and sulfur sources does not have any effect. The kinetics of the changes in the expression level of AtCGS suggest that its level can be maintained during extended darkness, or even when the sucrose content is reduced, such as during abiotic stresses. The up-regulation of AtCGS by light is in agreement with previous studies showing that other enzymes regulating the level of the carbon/amino skeleton and the sulfur group of Met, are up-regulated by light. The results indicate that light and dark participate in the regulation of the carbon/amino skeleton flux in the synthesis of amino acids of the aspartate family.
    Amino Acids 08/2013; · 3.91 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014

Similar Publications