Leucine carboxyl methyltransferase-1 is necessary for normal progression through mitosis in mammalian cells

Emory University, Atlanta, Georgia, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2007; 282(42):30974-84. DOI: 10.1074/jbc.M704861200
Source: PubMed

ABSTRACT Protein phosphatase 2A (PP2A) is a multifunctional phosphatase that plays important roles in many cellular processes including regulation of cell cycle and apoptosis. Because PP2A is involved in so many diverse processes, it is highly regulated by both non-covalent and covalent mechanisms that are still being defined. In this study we have investigated the importance of leucine carboxyl methyltransferase-1 (LCMT-1) for PP2A methylation and cell function. We show that reduction of LCMT-1 protein levels by small hairpin RNAs causes up to a 70% reduction in PP2A methylation in HeLa cells, indicating that LCMT-1 is the major mammalian PP2A methyltransferase. In addition, LCMT-1 knockdown reduced the formation of PP2A heterotrimers containing the Balpha regulatory subunit and, in a subset of the cells, induced apoptosis, characterized by caspase activation, nuclear condensation/fragmentation, and membrane blebbing. Knockdown of the PP2A Balpha regulatory subunit induced a similar amount of apoptosis, suggesting that LCMT-1 induces apoptosis in part by disrupting the formation of PP2A(BalphaAC) heterotrimers. Treatment with a pan-caspase inhibitor partially rescued cells from apoptosis induced by LCMT-1 or Balpha knockdown. LCMT-1 knockdown cells and Balpha knockdown cells were more sensitive to the spindle-targeting drug nocodazole, suggesting that LCMT-1 and Balpha are important for spindle checkpoint. Treatment of LCMT-1 and Balpha knockdown cells with thymidine dramatically reduced cell death, presumably by blocking progression through mitosis. Consistent with these results, homozygous gene trap knock-out of LCMT-1 in mice resulted in embryonic lethality. Collectively, our results indicate that LCMT-1 is important for normal progression through mitosis and cell survival and is essential for embryonic development in mice.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterotrimeric protein phosphatase 2A (PP2A) consists of catalytic C (PP2Ac), structural A, and regulatory B-type subunits, and its dysfunction has been linked to cancer. Reversible methylation of PP2Ac by leucine carboxyl methyltransferase 1 (LCMT-1) and protein phosphatase methylesterase 1 (PME-1) differentially regulates B-type subunit binding and thus PP2A function. Polyomavirus middle (PyMT) and small (PyST) tumor antigens and SV40 small tumor antigen (SVST) are oncoproteins that block PP2A function by replacing certain B-type subunits, resulting in cellular transformation. Whereas the B-type subunits replaced by these oncoproteins seem to exhibit a binding preference for methylated PP2Ac, PyMT does not. We hypothesize that circumventing the normal cellular control of PP2A by PP2Ac methylation is a general strategy for ST- and MT-mediated transformation. Two predictions of this hypothesis are (1) that PyST and SVST also bind PP2A in a methylation-insensitive manner and (2) that down-regulation of PP2Ac methylation will activate progrowth and prosurvival signaling and promote transformation. We found that SVST and PyST, like PyMT, indeed form PP2A heterotrimers independently of PP2Ac methylation. In addition, reducing PP2Ac methylation through LCMT-1 knockdown or PME-1 overexpression enhanced transformation by activating the Akt and p70/p85 S6 kinase (S6K) pathways, pathways also activated by MT and ST oncoproteins. These results support the hypothesis that MT and ST oncoproteins circumvent cellular control of PP2A by methylation to promote transformation. They also implicate LCMT-1 as a negative regulator of Akt and p70/p85 S6K. Therefore, disruption of PP2Ac methylation may contribute to cancer, and modulation of this methylation may serve as an anticancer target.
    Neoplasia (New York, N.Y.) 07/2012; 14(7):585-99. DOI:10.1593/neo.12768 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.
    Molecular cell 02/2011; 41(3):331-42. DOI:10.1016/j.molcel.2010.12.030 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase (LCMT1), and demethylation by the protein phosphatase methylesterase 1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. In this study, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of protein phosphatase methylesterase 1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes.
    Journal of Neurochemistry 10/2010; 115(6):1455-65. DOI:10.1111/j.1471-4159.2010.07049.x · 4.24 Impact Factor


Available from