A regulatory network involving Foxn4, Mash1 and delta-like 4/Notch1 generates V2a and V2b spinal interneurons from a common progenitor pool

Harvard University, Cambridge, Massachusetts, United States
Development (Impact Factor: 6.27). 11/2007; 134(19):3427-36. DOI: 10.1242/dev.005868
Source: PubMed

ABSTRACT In the developing central nervous system, cellular diversity depends in part on organising signals that establish regionally restricted progenitor domains, each of which produces distinct types of differentiated neurons. However, the mechanisms of neuronal subtype specification within each progenitor domain remain poorly understood. The p2 progenitor domain in the ventral spinal cord gives rise to two interneuron (IN) subtypes, V2a and V2b, which integrate into local neuronal networks that control motor activity and locomotion. Foxn4, a forkhead transcription factor, is expressed in the common progenitors of V2a and V2b INs and is required directly for V2b but not for V2a development. We show here in experiments conducted using mouse and chick that Foxn4 induces expression of delta-like 4 (Dll4) and Mash1 (Ascl1). Dll4 then signals through Notch1 to subdivide the p2 progenitor pool. Foxn4, Mash1 and activated Notch1 trigger the genetic cascade leading to V2b INs, whereas the complementary set of progenitors, without active Notch1, generates V2a INs. Thus, Foxn4 plays a dual role in V2 IN development: (1) by initiating Notch-Delta signalling, it introduces the asymmetry required for development of V2a and V2b INs from their common progenitors; (2) it simultaneously activates the V2b genetic programme.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A central problem in development is how fates of closely related cells are segregated. Lineally related motoneurons (MNs) and interneurons (INs) express many genes in common yet acquire distinct fates. For example, in mouse and chick Lhx3 plays a pivotal role in the development of both cell classes. Here, we utilize the ability to recognize individual zebrafish neurons to examine the roles of Lhx3 and its paralog Lhx4 in the development of MNs and ventral INs. We show that Lhx3 and Lhx4 are expressed by post-mitotic axial MNs derived from the MN progenitor (pMN) domain, p2 domain progenitors and by several types of INs derived from pMN and p2 domains. In the absence of Lhx3 and Lhx4, early-developing primary MNs (PMNs) adopt a hybrid fate, with morphological and molecular features of both PMNs and pMN-derived Kolmer-Agduhr' (KA') INs. In addition, we show that Lhx3 and Lhx4 distinguish the fates of two pMN-derived INs. Finally, we demonstrate that Lhx3 and Lhx4 are necessary for the formation of late-developing V2a and V2b INs. In conjunction with our previous work, these data reveal that distinct transcription factor families are deployed in post-mitotic MNs to unequivocally assign MN fate and suppress the development of alternative pMN-derived IN fates.
    Development 09/2014; 141(20). DOI:10.1242/dev.105718 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During vertebrate development, the central (CNS) and peripheral nervous systems (PNS) arise from the neural plate. Cells at the margin of the neural plate give rise to neural crest cells, which migrate extensively throughout the embryo, contributing to the majority of neurons and all of the glia of the PNS. The rest of the neural plate invaginates to form the neural tube, which expands to form the brain and spinal cord. The emergence of molecular cloning techniques and identification of fluorophores like Green Fluorescent Protein (GFP), together with transgenic and electroporation technologies, have made it possible to easily visualize the cellular and molecular events in play during nervous system formation. These lineage-tracing techniques have precisely demonstrated the migratory pathways followed by neural crest cells and increased knowledge about their differentiation into PNS derivatives. Similarly, in the spinal cord, lineage-tracing techniques have led to a greater understanding of the regional organization of multiple classes of neural progenitor and post-mitotic neurons along the different axes of the spinal cord and how these distinct classes of neurons assemble into the specific neural circuits required to realize their various functions. Here, we review how both classical and modern lineage and marker analyses have expanded our knowledge of early peripheral nervous system and spinal cord development.
    Developmental Biology 10/2014; 398(2). DOI:10.1016/j.ydbio.2014.09.033 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously described the creation and analysis of a Notch1 activity-trap mouse line, Notch1 intramembrane proteolysis-Cre6MT or N1IP::Cre(LO), that marked cells experiencing relatively high levels of Notch1 activation. Here, we report and characterize a second line with improved sensitivity (N1IP::Cre(HI)) to mark cells experiencing lower levels of Notch1 activation. This improvement was achieved by increasing transcript stability and by restoring the native carboxy terminus of Cre, resulting in a five- to tenfold increase in Cre activity. The magnitude of this effect probably impacts Cre activity in strains with carboxy-terminal Ert2 fusion. These two trap lines and the related line N1IP::Cre(ERT2) form a complementary mapping tool kit to identify changes in Notch1 activation patterns in vivo as the consequence of genetic or pharmaceutical intervention, and illustrate the variation in Notch1 signal strength from one tissue to the next and across developmental time. © 2015. Published by The Company of Biologists Ltd.