Microbial biosensors.

Division of Chemical and Biomolecular Engineering and Centre of Biotechnology, Nanyang Technological University, Singapore 637722, Singapore.
Analytica chimica acta (Impact Factor: 4.31). 06/2006; 568(1-2):200-10. DOI: 10.1016/j.aca.2005.11.065
Source: PubMed

ABSTRACT A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A biosensor is an analytical tool that comprises two essential components, an immobilized bio-component, in intimate contact with a transducer that converts a biological signal into a measurable electrical signal. Both electrochemical and optical transducers are mainly transduction methods that are employed in biosensor developments. This review summarises the studies carried on ethanol determination based on enzyme biosensors, using alcohol dehydogenase (ADH), alcohol oxidase (AOX) or bi-enzyme system, the various techniques of immobilisation, the transducers used and analytical characteristics for biosensor development are described. Almost all enzyme based ethanol biosensors developed are based on the monitoring of NADH in the case of ADH based biosensor, O2 consumption or H2O2 production in the case of AOX biosensor and H2O2 production in the case of thebi-enzyme system. Underlying the importance of this review is the fact that alcohol istoxic above certain concentrations and its continuous real time monitoring in clinical, environmental and food related environments is of utmost interest.
    OA Alcohol. 01/2014; 2014 Jan 18;2(1):1(2):1-8.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial drug resistance is a current public health problem, which is compounded by the misuse of antibiotics in medical practice and the emergence of Multidrug-Resistant (MDR) microorganisms. Therefore it is necessary to develop new anti-infective drugs and implement new methodologies able to establish the Antimicrobial Susceptibility (AST) in field and the point-of-care. In this sense biosensors is a promising technology that can detect MDR strains and small molecules in various samples, these devices have the advantages that can be miniaturized for obtain portability, rapidity, and cost-effectiveness. The aim of this work is to present the applications of biosensors technology in antimicrobial drug discovery, since cell based biosensors and cell culture on chips, considering metabolic interactions of the microbial world and the pharmacological response to be inhibited by compounds with promising activity with the end of design antimicrobial drug screening platforms robust, automatable and reproducible
    Journal of Microbial & Biochemical Technology 11/2014; S10(002). · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.
    Sensors (Basel, Switzerland). 01/2014; 14(8):13863-13912.

Full-text (2 Sources)

Available from
May 23, 2014