Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes.

Institute for Genomic Research, J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850, USA.
Science (Impact Factor: 31.48). 10/2007; 317(5845):1753-6. DOI: 10.1126/science.1142490
Source: PubMed

ABSTRACT Although common among bacteria, lateral gene transfer-the movement of genes between distantly related organisms-is thought to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that range from nearly the entire Wolbachia genome (>1 megabase) to short (<500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dirofilaria immitis, or canine heartworm, is a filarial nematode parasite that infects dogs and other mammals worldwide. Current disease control relies on regular administration of anthelmintic preventives, however, relatively poor compliance and evidence of developing drug resistance could warrant alternative measures against D. immitis and related human filarial infections be taken. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont thought to be involved in providing certain critical metabolites to the nematode. Correlations between nematode and Wolbachia transcriptomes during development have not been examined. Therefore, we detailed the developmental transcriptome of both D. immitis and its Wolbachia (wDi) in order to gain a better understanding of parasite-endosymbiont interactions throughout the nematode life cycle. Over 215 million single-end 50 bp reads were generated from total RNA from D. immitis adult males and females, microfilariae (mf) and third and fourth-stage larvae (L3 and L4). We critically evaluated the transcriptomes of the various life cycle stages to reveal sex-biased transcriptional patterns, as well as transcriptional differences between larval stages that may be involved in larval maturation. Hierarchical clustering revealed both D. immitis and wDi transcriptional activity in the L3 stage is clearly distinct from other life cycle stages. Interestingly, a large proportion of both D. immitis and wDi genes display microfilarial-biased transcriptional patterns. Concurrent transcriptome sequencing identified potential molecular interactions between parasite and endosymbiont that are more prominent during certain life cycle stages. In support of metabolite provisioning between filarial nematodes and Wolbachia, the synthesis of the critical metabolite, heme, by wDi appears to be synchronized in a stage-specific manner (mf-specific) with the production of heme-binding proteins in D. immitis. Our integrated transcriptomic study has highlighted interesting correlations between Wolbachia and D. immitis transcription throughout the life cycle and provided a resource that may be used for the development of novel intervention strategies, not only for the treatment and prevention of D. immitis infections, but of other closely related human parasites as well.
    BMC Genomics 01/2014; 15(1):1041. · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cooperation is rife in the microbial world, yet our best current theories of the evolution of cooperation were developed with multicellular animals in mind. Hamilton’s theory of inclusive fitness is an important case in point: applying the theory in a microbial setting is far from straightforward, as social evolution in microbes has a number of distinctive features that the theory was never intended to capture. In this article, I focus on the conceptual challenges posed by the project of extending Hamilton’s theory to accommodate the effects of gene mobility. I begin by outlining the basics of the theory of inclusive fitness, emphasizing the role that the concept of relatedness is intended to play. I then provide a brief history of this concept, showing how, over the past fifty years, it has departed from the intuitive notion of genealogical kinship to encompass a range of generalized measures of genetic similarity. I proceed to argue that gene mobility forces a further revision of the concept. The reason in short is that, when the genes implicated in producing social behaviour are mobile, we cannot talk of an organism’s genotype simpliciter; we can talk only of an organism’s genotype at a particular stage in its life cycle. We must therefore ask: with respect to which stage(s) in the life cycle should relatedness be evaluated? For instance: is it genetic similarity at the time of social interaction that matters to the evolution of social behaviour, or is it genetic similarity at the time of reproduction? I argue that, strictly speaking, it is neither of these: what really matters to the evolution of social behaviour is diachronic genetic similarity between the producers of fitness benefits at the time they produce them and the recipients of those benefits at the end of their life-cycle. I close by discussing the implications of this result. The main payoff is that it makes room for a possible new mechanism for the evolution of altruism in microbes that does not require correlated interaction among bearers of the genes for altruism. The importance of this mechanism in nature remains an open empirical question.
    Biology and Philosophy 07/2014; 29(4):445-476. · 0.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome. Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia.We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F). This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.
    BMC genomics. 12/2014; 15(1):1097.

Full-text (2 Sources)

Available from
Jun 5, 2014