Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells.

Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
Molecular Biology of the Cell (Impact Factor: 4.6). 12/2007; 18(11):4483-92. DOI: 10.1091/mbc.E07-05-0461
Source: PubMed

ABSTRACT The exocyst is an evolutionarily conserved octameric protein complex that tethers post-Golgi secretory vesicles at the plasma membrane for exocytosis. To elucidate the mechanism of vesicle tethering, it is important to understand how the exocyst physically associates with the plasma membrane (PM). In this study, we report that the mammalian exocyst subunit Exo70 associates with the PM through its direct interaction with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). Furthermore, we have identified key conserved residues at the C-terminus of Exo70 that are crucial for the interaction of Exo70 with PI(4,5)P(2). Disrupting Exo70-PI(4,5)P(2) interaction abolished the membrane association of Exo70. We have also found that wild-type Exo70 but not the PI(4,5)P(2)-binding-deficient Exo70 mutant is capable of recruiting other exocyst components to the PM. Using the ts045 vesicular stomatitis virus glycoprotein trafficking assay, we demonstrate that Exo70-PI(4,5)P(2) interaction is critical for the docking and fusion of post-Golgi secretory vesicles, but not for their transport to the PM.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The organization of cells into interconnected structures such as animal tissues requires a sophisticated system directing receptors and adhesion proteins to the cell surface. The Rab11 small G proteins (Rab11a, b, and Rab25) of the Ras superfamily are master regulators of the surface expression of receptors and adhesion proteins. Acting as a molecular switch, Rab11 builds distinct molecular machinery such as motor protein complexes and the exocyst to transport proteins to the cell surface. Recent evidence reveals Rab11 localization at the trans-Golgi network (TGN), post-Golgi vesicles, and the recycling endosome, placing it at the intersection between the endocytic and exocytic trafficking pathways. We review Rab11 in various cellular contexts, and discuss its regulation and mechanisms by which Rab11 couples with effector proteins.
    Trends in cell biology 03/2014; · 12.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Plant cell walls are complex matrices of carbohydrates and proteins that control cell morphology and provide protection and rigidity for the plant body. The construction and maintenance of this intricate system involves the delivery and recycling of its components through a precise balance of endomembrane trafficking, which is controlled by a plethora of cell signalling factors. Phosphoinositides (PIs) are one class of signalling molecules with diverse roles in vesicle trafficking and cytoskeleton structure across different kingdoms. Therefore, PIs may also play an important role in the assembly of plant cell walls.ScopeThe eukaryotic PI pathway is an intricate network of different lipids, which appear to be divided in different pools that can partake in vesicle trafficking or signalling. Most of our current understanding of how PIs function in cell metabolism comes from yeast and mammalian systems; however, in recent years significant progress has been made towards a better understanding of the plant PI system. This review examines the current state of knowledge of how PIs regulate vesicle trafficking and their potential influence on plant cell-wall architecture. It considers first how PIs are formed in plants and then examines their role in the control of vesicle trafficking. Interactions between PIs and the actin cytoskeleton and small GTPases are also discussed. Future challenges for research are suggested.
    Annals of Botany 04/2014; · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: Protein production and secretion are essential to syncytiotrophoblast function and are associated with cytotrophoblast cell fusion and differentiation. Syncytiotrophoblast hormone secretion is a crucial determinant of maternal-fetal health, and can be misregulated in pathological pregnancies. Although, polarized secretion is a key component of placental function, the mechanisms underlying this process are poorly understood. OBJECTIVE: While the octameric exocyst complex is classically regarded as a master regulator of secretion in various mammalian systems, its expression in the placenta remained unexplored. We hypothesized that the syncytiotrophoblast would express all exocyst complex components and effector proteins requisite for vesicle-mediated secretion more abundantly than cytotrophoblasts in tissue specimens. METHODS: A two-tiered immunobiological approach was utilized to characterize exocyst and ancillary proteins in normal, term human placentas. Exocyst protein expression and localization was documented in tissue homogenates via immunoblotting and immunofluorescence labeling of placental sections. RESULTS: The eight exocyst proteins, EXOC1, 2, 3, 4, 5, 6, 7, and 8, were found in the human placenta. In addition, RAB11, an important exocyst complex modulator, was also expressed. Exocyst and Rab protein expression appeared to be regulated during trophoblast differentiation, as the syncytiotrophoblast expressed these proteins with little, if any, expression in cytotrophoblast cells. Additionally, exocyst proteins were localized at or near the syncytiotrophoblast apical membrane, the major site of placental secretion. DISCUSSION/CONCLUSION: Our findings highlight exocyst protein expression as novel indicators of trophoblast differentiation. The exocyst's regulated localization within the syncytiotrophoblast in conjunction with its well known functions suggests a possible role in placental polarized secretion.
    Placenta 05/2014; · 3.12 Impact Factor


Available from