Exercise Builds Brain Health: Key Roles of Growth Factor Cascades and Inflammation

University of California, Irvine Institute for Brain Aging and Dementia, 1113 Gillespie Building, Irvine, CA 92617-4540, USA.
Trends in Neurosciences (Impact Factor: 13.56). 10/2007; 30(9):464-72. DOI: 10.1016/j.tins.2007.06.011
Source: PubMed


Human and other animal studies demonstrate that exercise targets many aspects of brain function and has broad effects on overall brain health. The benefits of exercise have been best defined for learning and memory, protection from neurodegeneration and alleviation of depression, particularly in elderly populations. Exercise increases synaptic plasticity by directly affecting synaptic structure and potentiating synaptic strength, and by strengthening the underlying systems that support plasticity including neurogenesis, metabolism and vascular function. Such exercise-induced structural and functional change has been documented in various brain regions but has been best-studied in the hippocampus - the focus of this review. A key mechanism mediating these broad benefits of exercise on the brain is induction of central and peripheral growth factors and growth factor cascades, which instruct downstream structural and functional change. In addition, exercise reduces peripheral risk factors such as diabetes, hypertension and cardiovascular disease, which converge to cause brain dysfunction and neurodegeneration. A common mechanism underlying the central and peripheral effects of exercise might be related to inflammation, which can impair growth factor signaling both systemically and in the brain. Thus, through regulation of growth factors and reduction of peripheral and central risk factors, exercise ensures successful brain function.

Download full-text


Available from: Nicole C Berchtold, Oct 01, 2015
1 Follower
2,020 Reads
  • Source
    • "Importantly, brain BDNF availability can be changed by non-pharmacological and non-invasive approaches, specifically by diet (Duan et al., 2001; Lee et al., 2002), exercise (Neeper et al., 1995; Cotman et al., 2007), and EE (Young et al., 1999; Wolf et al., 2006). Early EE increases conversion of pro-BDNF to BDNF in the adult rat's hippocampus (Cao et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal morphine exposure throughout pregnancy can induce a series of neurobehavioral and neurochemical disturbances by affecting central nervous system development. This study was designed to investigate the effects of an enriched environment on behavioral deficits and changes in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by prenatal morphine in rats. On pregnancy days 11–18, female Wistar rats were randomly injected twice daily with saline or morphine. Offspring were weaned on postnatal day (PND) 21. They were subjected to a standard rearing environment or an enriched environment on PNDs 22–50. On PNDs 51–57, the behavioral responses including anxiety and depression-like behaviors, and passive avoidance memory as well as hippocampal BDNF levels were investigated. The light/dark (L/D) box and elevated plus maze (EPM) were used for the study of anxiety, forced swimming test (FST) was used to assess depression-like behavior and passive avoidance task was used to evaluate learning and memory. Prenatal morphine exposure caused a reduction in time spent in the EPM open arms and a reduction in time spent in the lit side of the L/D box. It also decreased step-through latency and increased time spent in the dark side of passive avoidance task. Prenatal morphine exposure also reduced immobility time and increased swimming time in FST. Postnatal rearing in an enriched environment counteracted with behavioral deficits in the EPM and passive avoidance task, but not in the L/D box. This suggests that exposure to an enriched environment during adolescence period alters anxiety profile in a task-specific manner. Prenatal morphine exposure reduced hippocampal BDNF levels, but enriched environment significantly increased BDNF levels in both saline- and morphineexposed groups. Our results demonstrate that exposure to an enriched environment alleviates behavioral deficits induced by prenatal morphine exposure and up-regulates the decreased levels of BDNF. BDNF may contribute to the beneficial effects of an enriched environment on prenatal morphine-exposed to rats.
    Neuroscience 10/2015; 305(1):372-383. DOI:10.1016/j.neuroscience · 3.36 Impact Factor
  • Source
    • "Training types may also act by additive and independent mechanisms on cognition (Wolf et al., 2006). Physical training may reduce neuroinflammation (Cotman et al., 2007), increase cerebral blood flow (Smith et al., 2010a) and velocity (Ainslie et al., 2008), decrease risk factors for cognitive decline such as cardiovascular diseases and diabetes (Cotman et al., 2007), reduce amyloid deposition (Liang et al., 2010) and increase hippocampal size (Erickson et al., 2011). Cognitive training may reduce the impairment of hippocampal long-term potentiation induced by amyloid-β oligomers (Li et al., 2013) and may reduce amyloid deposition independently from physical training (Lazarov et al., 2005; Landau et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical as well as cognitive training interventions improve specific cognitive functions but effects barely generalize on global cognition. Combined physical and cognitive training may overcome this shortcoming as physical training may facilitate the neuroplastic potential which, in turn, may be guided by cognitive training. This study aimed at investigating the benefits of combined training on global cognition while assessing the effect of training dosage and exploring the role of several potential effect modifiers. In this multi-center study, 322 older adults with or without neurocognitive disorders (NCDs) were allocated to a computerized, game-based, combined physical and cognitive training group (n = 237) or a passive control group (n = 85). Training group participants were allocated to different training dosages ranging from 24 to 110 potential sessions. In a pre-post-test design, global cognition was assessed by averaging standardized performance in working memory, episodic memory and executive function tests. The intervention group increased in global cognition compared to the control group, p = 0.002, Cohen's d = 0.31. Exploratory analysis revealed a trend for less benefits in participants with more severe NCD, p = 0.08 (cognitively healthy: d = 0.54; mild cognitive impairment: d = 0.19; dementia: d = 0.04). In participants without dementia, we found a dose-response effect of the potential number and of the completed number of training sessions on global cognition, p = 0.008 and p = 0.04, respectively. The results indicate that combined physical and cognitive training improves global cognition in a dose-responsive manner but these benefits may be less pronounced in older adults with more severe NCD. The long-lasting impact of combined training on the incidence and trajectory of NCDs in relation to its severity should be assessed in future long-term trials.
    Frontiers in Aging Neuroscience 08/2015; 7(152). DOI:10.3389/fnagi.2015.00152 · 4.00 Impact Factor
  • Source
    • "The present results support the usefulness of integrating physical and mental training across the lifespan [46] [66] and suggest that exposure to holistic forms of environmental enrichment as the QMT aids the development of executive function [45] and metacognition [48]. The results also further our understanding of the underlying biological mechanisms, confirming and extending the concept that brain growth factors are central to the benefits of exercise [59]. In comparison to other MBP, the QMT has the advantage of being a training of relatively short duration (possibly several minutes) and that can be practiced in limited spaces. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mind-body practices (MBP) are known to induce electrophysiological and morphological changes, whereas reports related to changes of neurotrophins are surprisingly scarce. Consequently, in the current paper, we focused on the Quadrato motor training (QMT), a newly developed whole-body movement-based MBP, which has been reported to enhance creativity. Here we report the effects of 4 weeks of daily QMT on creativity and proNGF level in two interrelated studies. In Study A, we examined the effects of QMT compared with a walking training (WT) in healthy adults, utilizing the alternate uses task. In contrast with the WT, QMT resulted in increased creativity. In addition, the change in creativity negatively correlated with the change in proNGF levels. In Study B, we examined QMT effects on creativity and additional metacognitive functions in children, using a nonintervention group as control. Similar to Study A, following QMT, we found a negative correlation of proNGF with creativity, as well as working memory updating and planning ability. Together, the current results point to the relationship between increased creativity and decreased proNGF following MBP. Thus, the current research emphasizes the importance of widening the scope of examination of "MBP in motion" in relation to metacognition and well-being.
    BioMed Research International 06/2015; 2015. DOI:10.1155/2015/275062 · 2.71 Impact Factor
Show more