Article

Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought.

RMIT University, School of Applied Sciences, Biotechnology and Environmental Biology, Building 223, Level 1, Plenty Road, Bundoora, Victoria 3083, Australia.
BMC Genomics (Impact Factor: 4.4). 02/2007; 8:303. DOI: 10.1186/1471-2164-8-303
Source: PubMed

ABSTRACT Cultivated chickpea (Cicer arietinum) has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes.
The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE) between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea.
The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.

1 Bookmark
 · 
362 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chickpea (Cicer arietinum L.) genotypes are sensitive to low temperature (<10°C) during its reproductive stage suffer from abortion of flowers, infertile pods and small shriveled seeds that resulted in a significant decrease in crop yield. In the present investigation seeds of a number of cold stress-tolerant and susceptible genotypes were evaluated for biochemical and molecular diversity with the purpose to categorize them. The activities of various antioxidative enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase and catalase), content of H2O2 and malondialdehyde, enzymes involved in phosphate metabolism (acid and alkaline phosphatases), and content of phytic acid and proline were determined in seeds of 20 cold stress tolerant and seven cold stress susceptible genotypes. Higher activities of superoxide dismutase, ascorbate peroxidase, catalase and acid phosphatase and low content of malondialdehyde and phytic acid were observed in cold stress-tolerant genotypes as compared to cold stress susceptible genotypes. Seventeen chickpea genotypes comprising both cold stress-tolerant and susceptible ones were evaluated through 20 randomly amplified polymorphic DNA (RAPD) primers. The results of cluster analysis revealed two major groups. In the first group five tolerant (group 1a) and six susceptible genotypes (group 1b) clustered together whereas in second group all the tolerant genotypes clustered together (group 2). Out of 20 RAPD primers, 4 primers (Opa-13, Opa-14, Opa-15 and Opa-16) have been identified as markers for cold stress tolerance. In general high SOD activity, and H2O2 content and low MDA and phytic acid content are related with cold stress tolerance. The status of these markers was more pronounced in genotypes clustered in group 2 after RAPD analysis than in group 1a of cold stress-tolerant genotypes as compared to susceptible genotypes. The observed biochemical and molecular diversity could be useful for identifying and developing cold stress-tolerant genotypes of chickpea.
    Acta Physiologiae Plantarum 10/2011; 35(2012):569-580. · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normalisation to a reference gene is the most common method of internally controlling for error in quantitative PCR (qPCR) experiments. Studies based on qPCR in chickpea have been carried out using potential reference genes exclusively. Inappropriate normalisation may result in the acquisition of biologically irrelevant data. We have tested the expression of 12 candidate internal control genes in 36 samples representing different organs/developmental stages, genotypes and stress conditions. The most stably expressed genes were PUBQ, GAPDH, UBQ and bHLH, whereas 18S rRNA and EF-1a showed considerable regulation. The most suitable combination of reference genes for the particular experimental sets tested is provided. To illustrate the use of chickpea reference genes, we checked the expression of a putative defence gene in two different genotypes infected with Ascochyta rabiei (Pass.) Lab. The set of reference genes presented here will enable the more accurate and reliable normalisation of qPCR results for gene expression studies in this important legume crop. Our findings can be used as a starting point for reference gene selection in experimental conditions different from those tested here.
    Molecular Breeding 01/2012; 29:261-274. · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants, as any other organisms, possess evolutionary old mechanisms to cope with the various stresses they are exposed to day by day. The management of stresses and their consequences requires substantial energy, which is frequently subtracted from biomass (in crops: yield). Therefore, a deeper understanding of stress biology has been, is, and will be of paramount importance for plant breeding. One goal of plant stress research centers around the transcriptome, the entirety of transcripts from expressed genes, and aims at identifying major genes in the stress management of the inflicted plant. The development of appropriate technologies to quantitatively study the transcriptomes (indeed the various sub-transcriptomes) in stressed plants and to extract biological meaning from the massive data will be demonstrated here. In particular, reduced complexity sequencing techniques such as deepSuperSAGE and MACE (massive analysis of cDNA ends) and their potential in stress biology are portrayed.
    Journal of Plant Biochemistry and Biotechnology 01/2012; 21(1):119-127. · 0.41 Impact Factor

Full-text (2 Sources)

View
16 Downloads
Available from
May 20, 2014