Protective properties and surface localization of Plasmodium falciparum enolase.

Department of Biological Sciences, TIFR, Homi Babha Road, Colaba, Mumbai 400 005, India.
Infection and Immunity (Impact Factor: 4.16). 12/2007; 75(11):5500-8. DOI: 10.1128/IAI.00551-07
Source: PubMed

ABSTRACT The enolase protein of the human malarial parasite Plasmodium falciparum has recently been characterized. Apart from its glycolytic function, enolase has also been shown to possess antigenic properties and to be present on the cell wall of certain invasive organisms, such as Candida albicans. In order to assess whether enolase of P. falciparum is also antigenic, sera from residents of a region of Eastern India where malaria is endemic were tested against the recombinant P. falciparum enolase (r-Pfen) protein. About 96% of immune adult sera samples reacted with r-Pfen over and above the seronegative controls. Rabbit anti-r-Pfen antibodies inhibited the growth of in vitro cultures of P. falciparum. Mice immunized with r-Pfen showed protection against a challenge with the 17XL lethal strain of the mouse malarial parasite Plasmodium yoelii. The antibodies raised against r-Pfen were specific for Plasmodium and did not react to the host tissues. Immunofluorescence as well as electron microscopic examinations revealed localization of the enolase protein on the merozoite cell surface. These observations establish malaria enolase to be a potential protective antigen.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mycoplasma synoviae is an avian pathogen that can lead to respiratory tract infections and arthritis in chickens and turkeys, resulting in serious economic losses to the poultry industry. Enolase reportedly plays important roles in several bacterial pathogens, but its role in M. synoviae has not been established. Therefore, in this study, the enolase encoding gene (eno) of M. synoviae was amplified from strain WVU1853 and expressed in E. coli BL21 cells. Then the enzymatic activity, immunogenicity and binding activity with chicken plasminogen (Plg) and human fibronectin (Fn) was evaluated.ResultsWe demonstrated that the recombinant M. synoviae enolase protein (rMsEno) can catalyze the conversion of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP), the Km and Vmax values of rMsEno were 1.1¿×¿10¿3 M and 0.739 ¿mol/L/min, respectively. Western blot and immuno-electron microscopy analyses confirmed that enolase was distributed on the surface and within the cytoplasm of M. synoviae cells. The binding assays demonstrated that rMsEno was able to bind to chicken Plg and human Fn proteins. A complement-dependent mycoplasmacidal assay demonstrated that rabbit anti¿rMsEno serum had distinct mycoplasmacidal efficacy in the presence of complement, which also confirmed that enolase was distributed on the surface of M. synoviae. An inhibition assay showed that the adherence of M. synoviae to DF-1 cells pre-treated with Plg could be effectively inhibited by treatment with rabbit anti-rMsEno serum.Conclusion These results reveal that M. synoviae enolase has good catalytic activity for conversion of 2-PGA to PEP, and binding activity with chicken Plg and human Fn. Rabbit anti¿rMsEno serum displayed an obvious complement-dependent mycoplasmacidal effect and adherent inhibition effect. These results suggested that the M. synoviae enolase plays an important role in M. synoviae metabolism, and could potentially impact M. synoviae infection and immunity.
    BMC Veterinary Research 09/2014; 10(1):223. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tropical theileriosis is a disease caused by infection with an apicomplexan parasite, Theileria annulata, and giving rise to huge economic losses. In recent years, parasite resistance has been reported against the most effective antitheilerial drug used for the treatment of this disease. This emphasizes the need for alternative methods of treatment. Enolase is a key glycolytic enzyme and can be selected as a macromolecular target of therapy of tropical theileriosis. In this study, an intron sequence present in T. annulata enolase gene was removed by PCR-directed mutagenesis, and the gene was first cloned into pGEM-T Easy vector and then subcloned into pLATE31 vector, and expressed in Escherichia coli cells. The enzyme was purified by affinity chromatography using Ni-NTA agarose column. Steady-state kinetic parameters of the enzyme were determined using GraFit 3.0. High quantities (~65 mg/l of culture) of pure recombinant T. annulata enolase have been obtained in a higly purified form (>95 %). Homodimer form of purified protein was determined from the molecular weights obtained from a single band on SDS-PAGE (48 kDa) and from size exclusion chromatography (93 kDa). Enzyme kinetic measurements using 2-PGA as substrate gave a specific activity of ~40 U/mg, K m: 106 μM, kcat: 37 s(-1), and k cat/K m: 3.5 × 10(5) M(-1) s(-1). These values have been determined for the first time from this parasite enzyme, and availability of large quantities of enolase enzyme will facilitate further kinetic and structural characterization toward design of new antitheilerial drugs.
    Molecular Biotechnology 03/2014; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In addition of their usual intracellular localization where they are involved in catalysing reactions of carbohydrate and energy metabolism by glycolysis, multiple studies have shown that glycolytic enzymes of many organisms, but notably pathogens, can also be present extracellularly. In the case of parasitic protists and helminths, they can be found either secreted or attached to the surface of the parasites. At these extracellular localizations, these enzymes have been shown to perform additional, very different so-called “moonlighting” functions, such as acting as ligands for a variety of components of the host. Due to this recognition, different extracellular glycolytic enzymes participate in various important parasite-host interactions such as adherence and invasion of parasites, modulation of the host's immune and haemostatic systems, promotion of angiogenesis, and acquisition of specific nutrients by the parasites. Accordingly, extracellular glycolytic enzymes are important for the invasion of the parasites and their establishment in the host, and in determining their virulence.
    Molecular and Biochemical Parasitology 02/2014; · 2.24 Impact Factor

Full-text (2 Sources)

Available from
Aug 18, 2014