Article

The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis.

Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, 300 East Superior Street, Chicago, IL 60611, USA.
Journal of Interferon & Cytokine Research (Impact Factor: 3.3). 09/2007; 27(8):623-36. DOI: 10.1089/jir.2007.0007
Source: PubMed

ABSTRACT The members of the protein kinase C (PKC) family of proteins play important roles in signaling for various growth factors, cytokines, and hormones. Extensive work over the years has led to the identification of three major groups of PKC isoforms. These include the classic PKCs (PKCalpha, PKCbeta(I), PKCbeta(II), PKCgamma), the novel PKCs (PKCdelta, PKCepsilon, PKCeta, PKCmu, PKCtheta), and the atypical PKCs (PKCzeta, PKCiota/lambda). All these PKC subtypes have been shown to participate in the generation of signals for important cellular processes and to mediate diverse and, in some cases, opposing biologic responses. There is emerging evidence that these kinases also play key functional roles in the regulation of cell growth, apoptosis, and differentiation of hematopoietic cells. In this review, both the engagement of the various PKC members in cytokine and growth factor signaling and their role in the regulation of hematopoiesis are discussed.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase C (PKC) belongs to a family of ten serine/threonine protein kinases encoded by nine genes. This family of proteins plays critical roles in signal transduction which results in cell proliferation, survival, differentiation and apoptosis. Due to differential subcellular localization and tissue distribution, each member displays distinct signaling characteristics. In this review, we have summarized the roles of PKC family members in chronic lymphocytic leukemia (CLL). CLL is a heterogeneous hematological disorder with survival ranging from months to decades. PKC isoforms are differentially expressed in CLL and play critical roles in CLL pathogenesis. Thus, isoform-specific PKC inhibitors may be an attractive option for CLL treatment.
    Medical Oncology 12/2013; 30(4):757. · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium-dependent protein kinases (PKCs) function in a myriad of cellular processes, including cell-cycle regulation, proliferation, hematopoietic stem cell differentiation, apoptosis, and malignant transformation. PKC inhibitors, when targeted to these pathways, have demonstrated efficacy against several types of solid tumors as well as leukemia. Chronic myeloid leukemia (CML) represents 20% of all adult leukemia. The aberrant Philadelphia chromosome has been reported as the main cause of CML development in hematopoietic stem cells, due to the formation of the BCR-ABL oncogene. PKCs and BCR-ABL coordinate several signaling pathways that are crucial to cellular malignant transformation. Experimental and clinical evidence suggests that pharmacological approaches using PKC inhibitors may be effective in the treatment of CML. This mini review summarizes articles from the National Center for Biotechnology Information website that have shown evidence of the involvement of PKC in CML.
    OncoTargets and Therapy 01/2014; 7:1247-54. · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Haematopoiesis is a complex process regulated at various levels facilitating rapid responses to external factors including stress, modulation of lineage commitment and terminal differentiation of progenitors. Although the transcription program determines the RNA pool of a cell, various mRNA strands can be obtained from the same template, giving rise to multiple protein isoforms. The majority of variants and isoforms co-occur in normal haematopoietic cells or are differentially expressed at various maturity stages of progenitor maturation and cellular differentiation within the same lineage or across lineages. Genetic aberrations or specific cellular states result in the predominant expression of abnormal isoforms leading to deregulation and disease. The presence of upstream open reading frames (uORF) in 5′ untranslated regions (UTRs) of a transcript, couples the utilization of start codons with the cellular status and availability of translation initiation factors (eIFs). In addition, tissue-specific and cell lineage-specific alternative promoter use, regulates several transcription factors producing transcript variants with variable 5′ exons. In this review, we propose to give a detailed account of the differential isoform formation, causing haematological malignancies.
    International Journal of Hematology 12/2013; · 1.68 Impact Factor