Age-Related Deficits in Component Processes of Working Memory

Department of Psychology, University of California, Berkeley, Berkeley, California, United States
Neuropsychology (Impact Factor: 3.43). 10/2007; 21(5):532-9. DOI: 10.1037/0894-4105.21.5.532
Source: PubMed

ABSTRACT Working memory deficits in normal aging have been well documented, and studies suggest that high memory load plus the presence of distraction negatively impacts successful memory performance to a greater degree in older individuals. However, characterization of the component processes that are impaired by these task manipulations is not clear. In this behavioral study, younger and older subjects were tested with a delayed-recognition and recall task in which the encoding and delay period were both manipulated. During the encoding period, the subjects were presented with either a single letter or multiple letters at their predetermined forward letter span, and the delay period was either uninterrupted or interrupted with a visual distraction. There was an age-related impairment of working memory recognition accuracy only in the combination of high memory load and distraction. These results suggest that when working memory maintenance systems are taxed, faulty recognition processes may underlie cognitive aging deficits in healthy older individuals.

Download full-text


Available from: Mark D'Esposito, Jan 07, 2015
  • Source
    • "Recent evidence have led several authors to suggest that such age-related decline in WM is mainly caused by changes in brain activity during information encoding (Friedman et al., 2007; Finnigan et al., 2011; Craik and Rose, 2012), especially when the encoding strategies are self-initiated, i.e., without specific instructions about how to encode information (Hashtroudi et al., 1989; Friedman et al., 2007; Craik and Rose, 2012). Moreover, differences in mnemonic capacities associated with normal aging are enhanced in tasks that impose high demands in cognitive abilities, such as those in which memory load is manipulated (Oberauer and Kliegl, 2001; Buckner, 2004; Gazzaley et al., 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most ERP research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM.
    Frontiers in Aging Neuroscience 05/2015; 7. DOI:10.3389/fnagi.2015.00075 · 2.84 Impact Factor
  • Source
    • "Affective WM tasks are thus classical WM tasks that require the processing of affective stimuli (e.g., positive and negative pictures or words). Most interestingly, this system seems to show a different trajectory in the aging mind compared to classical WM functions and although WM deficits, in general, are typically cited as one of the principal cognitive indexes of pathological aging [8], studies about emotional effects in WM in dementia of Alzheimer's type (DAT) patients are only at the beginning. Consequently, here, we aimed to review a series of studies with DAT patients that show emotion modulation in WM performance during the active manipulation of affective tobe-remembered stimuli. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of recent studies have reported that working memory does not seem to show typical age-related deficits in healthy older adults when emotional information is involved. Differently, studies about the short-term ability to encode and actively manipulate emotional information in dementia of Alzheimer's type are few and have yielded mixed results. Here, we review behavioural and neuroimaging evidence that points to a complex interaction between emotion modulation and working memory in Alzheimer's. In fact, depending on the function involved, patients may or may not show an emotional benefit in their working memory performance. In addition, this benefit is not always clearly biased (e.g., towards negative or positive information). We interpret this complex pattern of results as a consequence of the interaction between multiple factors including the severity of Alzheimer's disease, the nature of affective stimuli, and type of working memory task.
    02/2014; 2014:207698. DOI:10.1155/2014/207698
  • Source
    • "Several neuropsychological investigations of normal aging point to declines in speed of processing (Salthouse, 1996; Van Der Werf et al. 2001), episodic memory (Moscovitch & Winocur, 1992), attention and working memory (West, 1999; Belleville, Peretz, & Malenfant, 1996; Gazzaley et al. 2007) and executive control processes (Gliksy, Rubin, & Davidson, 2001), which have been linked to reduced neuronal density and neurochemical function in the prefrontal and medial-temporal cortices (Hedden & Gabrieli, 2004). However, such neuropsychological investigations may not fully capture the executive functioning of older adults in activities of daily living, for instance in situations where social and affective factors are more salient. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent research in neuroeconomics suggests that social economic decision-making may be best understood as a dual-systems process, integrating the influence of deliberative and affective subsystems. However, most of this research has focused on young adults and it remains unclear whether our current models extend to healthy aging. To address this question, we investigated the behavioral and neural basis of simple economic decisions in 18 young and 20 older healthy adults. Participants made decisions which involved accepting or rejecting monetary offers from human and non-human (computer) partners in an Ultimatum Game, while undergoing functional magnetic resonance imaging (fMRI). The partners' proposals involved splitting an amount of money between the two players, and ranged from $1 to $5 (from a $10 pot). Relative to young adults, older participants expected more equitable offers and rejected moderately unfair offers ($3) to a larger extent. Imaging results revealed that, relative to young participants, older adults had higher activations in the left dorsolateral prefrontal cortex (DLPFC) when receiving unfair offers ($1-$3). Age group moderated the relationship between left DLPFC activation and acceptance rates of unfair offers. In contrast, older adults showed lower activation of bilateral anterior insula in response to unfair offers. No age group difference was observed when participants received fair ($5) offers. These findings suggest that healthy aging may be associated with a stronger reliance on computational areas subserving goal maintenance and rule shifting (DLPFC) during interactive economic decision-making. Consistent with a well-documented "positivity effect", older age may also decrease recruitment of areas involved in emotion processing and integration (anterior insula) in the face of social norm violation.
    Neuropsychologia 03/2012; 50(7):1416-24. DOI:10.1016/j.neuropsychologia.2012.02.026 · 3.45 Impact Factor
Show more