Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers.

Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
Clinical Cancer Research (Impact Factor: 8.19). 09/2007; 13(17):5028-33. DOI: 10.1158/1078-0432.CCR-07-0300
Source: PubMed

ABSTRACT Chromosome 6q14-21 is commonly deleted in prostate cancers, occurring in approximately 22% of all tumors and approximately 40% of metastatic tumors. However, candidate prostate tumor suppressor genes in this region have not been identified, in part due to the large and broad nature of the deleted region implicated in previous studies.
We first used high-resolution Affymetrix single nucleotide polymorphism arrays to examine DNA from malignant and matched nonmalignant cells from 55 prostate cancer patients. We identified a small consensus region on 6q14-21 and evaluated the deletion status within the region among additional 40 tumors and normal pairs using quantitative PCR and fluorescence in situ hybridization. We finally tested the association between the deletion and Gleason score using the Fisher's exact test.
Tumors with small, interstitial deletions at 6q14-21 defined an 817-kb consensus region that is affected in 20 of 21 tumors. The MAP3K7 gene is one of five genes located in this region. In total, MAP3K7 was deleted in 32% of 95 tumors. Importantly, deletion of MAP3K7 was highly associated with higher-grade disease, occurring in 61% of tumors with Gleason score >or=8 compared with only 22% of tumors with Gleason score <or=7. The difference was highly significant (P = 0.001).
Our study provides strong evidence for the first time that a small deletion at 6q15, including the MAP3K7 gene and four other genes, is associated with high-grade prostate cancers. Although the deletion may be a marker for high-grade prostate cancer, additional studies are needed to understand its molecular mechanisms.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer co-opts a unique set of cellular pathways in its initiation and progression. The heterogeneity of prostate cancers is evident at earlier stages, and has led to rigorous efforts to stratify the localized prostate cancers, so that progression to advanced stages could be predicted based upon salient features of the early disease. The deregulated androgen receptor signaling is undeniably most important in the progression of the majority of prostate tumors. It is perhaps because of the primacy of the androgen receptor governed transcriptional program in prostate epithelium cells that once this program is corrupted, the consequences of the ensuing changes in activity are pleotropic and could contribute to malignancy in multiple ways. Following localized surgical and radiation therapies, 20-40% of patients will relapse and progress, and will be treated with androgen deprivation therapies. The successful development of the new agents that inhibit androgen signaling has changed the progression free survival in hormone resistant disease, but this has not changed the almost ubiquitous development of truly resistant phenotypes in advanced prostate cancer. This review summarizes the current understanding of the molecular pathways involved in localized and metastatic prostate cancer, with an emphasis on the clinical implications of the new knowledge.
    Oncotarget 09/2014; 5(17):7217-59. · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, connexins (Cxs) and pannexins (Panxs) are the building blocks of hemichannels. These proteins are frequently altered in neoplastic cells and have traditionally been considered as tumor suppressors. Alteration of Cxs and Panxs in cancer cells can be due to genetic, epigenetic and post-transcriptional/post-translational events. Activated hemichannels mediate the diffusional membrane transport of ions and small signaling molecules. In the last decade hemichannels have been shown to participate in diverse cell processes including the modulation of cell proliferation and survival. However, their possible role in tumor growth and expansion remains largely unexplored. Herein, we hypothesize about the possible role of hemichannels in carcinogenesis and tumor progression. To support this theory, we summarize the evidence regarding the involvement of hemichannels in cell proliferation and migration, as well as their possible role in the anti-tumor immune responses. In addition, we discuss the evidence linking hemichannels with cancer in diverse models and comment on the current technical limitations for their study.
    Frontiers in Physiology 06/2014; 5:237.