Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells

Emory University, Atlanta, Georgia, United States
American journal of physiology. Renal physiology (Impact Factor: 3.25). 12/2007; 293(5):F1666-77. DOI: 10.1152/ajprenal.00444.2006
Source: PubMed


Oxygen radicals play an important role in signal transduction and have been shown to influence epithelial sodium channel (ENaC) activity. We show that aldosterone, the principal hormone regulating renal ENaC activity, increases superoxide (O2*) production in A6 distal nephron cells. Aldosterone (50 nM to 1.5 microM) induced increases in dihydroethidium fluorescence in a dose-dependent manner in confluent A6 epithelial cells. Using single-channel measurements, we showed that sequestering endogenous O2* (with the O2* scavenger 2,2,6,6-tetramethylpiperidine 1-oxyl) significantly decreased ENaC open probability from 0.10 +/- 0.03 to 0.03 +/- 0.01. We also found that increasing endogenous O2* in A6 cells, by applying a superoxide dismutase inhibitor, prevented nitric oxide (NO) inhibition of ENaC activity. ENaC open probability values did not significantly change from control values (0.23 +/- 0.05) after superoxide dismutase and 1.5 microM NO coincubation (0.21 +/- 0.04). We report that xanthine oxidase and hypoxanthine compounds increase local concentrations of O2* by approximately 30%; with this mix, an increase in ENaC number of channels times the open probability (from 0.1 to 0.3) can be achieved in a cell-attached patch. Our data also suggest that O2* alters NO activity in a cGMP-independent mechanism, since pretreating A6 cells with ODQ compound (a selective inhibitor of NO-sensitive guanylyl cyclase) failed to block 2,2,6,6-tetramethylpiperidine 1-oxyl inhibition of ENaC activity.

Download full-text


Available from: My N Helms, Nov 25, 2015
  • Source
    • "We [11], [16], and others [10], have recently reported that ROS can regulate ENaC activity and thus, influence lung and/or total body homeostasis. The precise mechanism by which ROS regulates ENaC, however, remains unclear. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic alcohol consumption is associated with increased incidence of ICU-related morbidity and mortality, primarily from acute respiratory distress syndrome (ARDS). However, the mechanisms involved are unknown. One explanation is that alcohol regulates epithelial sodium channels (ENaC) via oxidant signaling to promote a pro- injury environment. We used small rodent models to mimic acute and chronic alcohol consumption and tested the hypothesis that ethanol (EtOH) would affect lung fluid clearance by up-regulating ENaC activity in the lung. Fluorescence labeling of rat lung slices and in vivo mouse lung revealed an increase in ROS production in response to acute EtOH exposure. Using western blots and fluorescein-5-maleimide labeling, we conclude that EtOH exposure modifies cysteines of α-ENaC while data from single channel patch clamp analysis confirm that 0.16% EtOH increased ENaC activity in rat alveolar cells. In vivo lung fluid clearance demonstrated a latent increase in fluid clearance in mice receiving EtOH diet. Ethanol mice given a tracheal instillation of LPS demonstrated early lung fluid clearance compared to caloric control mice and C57Bl/6 mice. Standard biochemical techniques reveal that chronic EtOH consumption resulted in greater protein expression of the catalytic gp91(phox) subunit and the obligate Rac1 protein. Collectively these data suggest that chronic EtOH consumption may lead to altered regulation of ENaC, contributing to a 'pro-injury' environment in the alcohol lung.
    PLoS ONE 02/2013; 8(1):e54750. DOI:10.1371/journal.pone.0054750 · 3.23 Impact Factor
  • Source
    • "The reason why NO inhibits the Na+/K+-ATPase in the proximal tubule but not in the CCD is unknown. However, this discrepancy might be explained by differences in the oxidative state of epithelial cells, which may counter effects of NO on Na+ transport (Yu et al., 2007; Helms et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The vectorial transport of Na(+) across epithelia is crucial for the maintenance of Na(+) and water homeostasis in organs such as the kidneys, lung, or intestine. Dysregulated Na(+) transport processes are associated with various human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, pulmonary edema, cystic fibrosis, or intestinal disorders, which indicate that a precise regulation of epithelial Na(+) transport is essential. Novel regulatory signaling molecules are gasotransmitters. There are currently three known gasotransmitters: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). These molecules are endogenously produced in mammalian cells by specific enzymes and have been shown to regulate various physiological processes. There is a growing body of evidence which indicates that gasotransmitters may also regulate Na(+) transport across epithelia. This review will summarize the available data concerning NO, CO, and H(2)S dependent regulation of epithelial Na(+) transport processes and will discuss whether or not these mediators can be considered as true physiological regulators of epithelial Na(+) transport biology.
    Frontiers in Physiology 04/2012; 3:83. DOI:10.3389/fphys.2012.00083 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance.
    Journal of Biological Chemistry 07/2008; 283(33):22875-83. DOI:10.1074/jbc.M801363200 · 4.57 Impact Factor
Show more