Article

Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells

Emory University, Atlanta, Georgia, United States
American journal of physiology. Renal physiology (Impact Factor: 3.3). 12/2007; 293(5):F1666-77. DOI: 10.1152/ajprenal.00444.2006
Source: PubMed

ABSTRACT Oxygen radicals play an important role in signal transduction and have been shown to influence epithelial sodium channel (ENaC) activity. We show that aldosterone, the principal hormone regulating renal ENaC activity, increases superoxide (O2*) production in A6 distal nephron cells. Aldosterone (50 nM to 1.5 microM) induced increases in dihydroethidium fluorescence in a dose-dependent manner in confluent A6 epithelial cells. Using single-channel measurements, we showed that sequestering endogenous O2* (with the O2* scavenger 2,2,6,6-tetramethylpiperidine 1-oxyl) significantly decreased ENaC open probability from 0.10 +/- 0.03 to 0.03 +/- 0.01. We also found that increasing endogenous O2* in A6 cells, by applying a superoxide dismutase inhibitor, prevented nitric oxide (NO) inhibition of ENaC activity. ENaC open probability values did not significantly change from control values (0.23 +/- 0.05) after superoxide dismutase and 1.5 microM NO coincubation (0.21 +/- 0.04). We report that xanthine oxidase and hypoxanthine compounds increase local concentrations of O2* by approximately 30%; with this mix, an increase in ENaC number of channels times the open probability (from 0.1 to 0.3) can be achieved in a cell-attached patch. Our data also suggest that O2* alters NO activity in a cGMP-independent mechanism, since pretreating A6 cells with ODQ compound (a selective inhibitor of NO-sensitive guanylyl cyclase) failed to block 2,2,6,6-tetramethylpiperidine 1-oxyl inhibition of ENaC activity.

0 Followers
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance.
    Journal of Biological Chemistry 07/2008; 283(33):22875-83. DOI:10.1074/jbc.M801363200 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amiloride-sensitive epithelial sodium channels (ENaC) play an important role in lung sodium transport. Sodium transport is closely regulated to maintain an appropriate fluid layer on the alveolar surface. Both alveolar type I and II cells have several different sodium-permeable channels in their apical membranes that play a role in normal lung physiology and pathophysiology. In many epithelial tissues, ENaC is formed from three subunit proteins: alpha, beta, and gamma ENaC. Part of the diversity of sodium-permeable channels in lung arises from assembling different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. Thus, lung epithelium has enormous flexibility to alter the magnitude of salt and water transport. In lung, ENaC is regulated by many transmitter and hormonal agents. Regulation depends upon the type of sodium channel but involves controlling the number of apical channels and/or the activity of individual channels.
    Annual Review of Physiology 11/2008; 71:403-23. DOI:10.1146/annurev.physiol.010908.163250 · 14.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
    Pharmacological reviews 01/2009; 60(4):418-69. DOI:10.1124/pr.108.000240 · 18.55 Impact Factor
Show more