Article

Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells.

The Scripps Research, Institute Department of Cell Biology, La Jolla, California 92037, USA.
Nature (Impact Factor: 42.35). 10/2007; 449(7158):87-91. DOI: 10.1038/nature06091
Source: PubMed

ABSTRACT Hair cells of the inner ear are mechanosensors that transduce mechanical forces arising from sound waves and head movement into electrochemical signals to provide our sense of hearing and balance. Each hair cell contains at the apical surface a bundle of stereocilia. Mechanoelectrical transduction takes place close to the tips of stereocilia in proximity to extracellular tip-link filaments that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Recent reports on the composition, properties and function of tip links are conflicting. Here we demonstrate that two cadherins that are linked to inherited forms of deafness in humans interact to form tip links. Immunohistochemical studies using rodent hair cells show that cadherin 23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of tip links, respectively. The amino termini of the two cadherins co-localize on tip-link filaments. Biochemical experiments show that CDH23 homodimers interact in trans with PCDH15 homodimers to form a filament with structural similarity to tip links. Ions that affect tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interactions between CDH23 and PCDH15. Our studies define the molecular composition of tip links and provide a conceptual base for exploring the mechanisms of sensory impairment associated with mutations in CDH23 and PCDH15.

2 Bookmarks
 · 
203 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of the auditory hair cell mechano-electrical transduction (hcMET) channel has been a major focus in the hearing research field since the 1980s when direct mechanical gating of a transduction channel was proposed (Corey and Hudspeth J Neurosci 3:962-976, 1983). To this day, the molecular identity of this channel remains controversial. However, many of the hcMET channel's properties have been characterized, including pore properties, calcium-dependent ion permeability, rectification, and single channel conductance. At this point, elucidating the molecular identity of the hcMET channel will provide new tools for understanding the mechanotransduction process. This review discusses the significance of identifying the hcMET channel, the difficulties associated with that task, as well as the establishment of clear criteria for this identification. Finally, we discuss potential candidate channels in light of these criteria.
    Pflügers Archiv - European Journal of Physiology 09/2014; · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing.MethodsA custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations.ResultsForty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements.Conclusions Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.
    Orphanet Journal of Rare Diseases 11/2014; 9(1):168. · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of function variants in the PCDH15 gene can cause Usher syndrome type 1F, an autosomal recessive disease associated with profound congenital hearing loss, vestibular dysfunction, and retinitis pigmentosa. The Ashkenazi Jewish population has an increased incidence of Usher syndrome type 1F (founder variant p.Arg245X accounts for 75% of alleles), yet the variant spectrum in a panethnic population remains undetermined. We sequenced the coding region and intron-exon borders of PCDH15 using next-generation DNA sequencing technology in approximately 14,000 patients from fertility clinics. More than 600 unique PCDH15 variants (single nucleotide changes and small indels) were identified, including previously described pathogenic variants p.Arg3X, p.Arg245X (five patients), p.Arg643X, p.Arg929X, and p.Arg1106X. Novel truncating variants were also found, including one in the N-terminal extracellular domain (p.Leu877X), but all other novel truncating variants clustered in the exon 33 encoded C-terminal cytoplasmic domain (52 patients, 14 variants). One variant was observed predominantly in African Americans (carrier frequency of 2.3%). The high incidence of truncating exon 33 variants indicates that they are unlikely to cause Usher syndrome type 1F even though many remove a large portion of the gene. They may be tolerated because PCDH15 has several alternate cytoplasmic domain exons and differentially spliced isoforms may function redundantly. Effects of some PCDH15 truncating variants were addressed by deep sequencing of a panethnic population.
    The Journal of Molecular Diagnostics. 11/2014; 16(6):673–678.

Full-text (3 Sources)

Download
49 Downloads
Available from
May 27, 2014