Article

Honeyguides and honey gatherers: interspecific communication in a symbiotic relationship.

Science (Impact Factor: 31.48). 04/1989; 243(4896):1343-6. DOI: 10.1126/science.243.4896.1343
Source: PubMed

ABSTRACT In many parts of Africa, people searching for honey are led to bees' nests by the greater honeyguide (Indicator indicator Sparrman). The Boran people of Kenya claim that they can deduce the direction and the distance to the nest as well as their own arrival at the nest from the bird's flight pattern, perching height, and calls. Analyses of the behavior of guiding birds confirmed these claims.

2 Followers
 · 
707 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Honey is the most energy dense food in nature. It is therefore not surprising that, where it exists, honey is an important food for almost all hunter-gatherers. Here we describe and analyze widespread honey collecting among forgers and show that where it is absent, in arctic and subarctic habitats, honey bees are also rare to absent. Second, we focus on one hunter-gatherer society, the Hadza of Tanzania. Hadza men and women both rank honey as their favorite food. Hadza acquire seven types of honey. Hadza women usually acquire honey that is close to the ground while men often climb tall baobab trees to raid the largest bee hives with stinging bees. Honey accounts for a substantial proportion of the kilocalories in the Hadza diet, especially that of Hadza men. Cross-cultural forager data reveal that in most hunter-gatherers, men acquire more honey than women but often, as with the Hadza, women do acquire some. Virtually all warm-climate foragers consume honey. Our closest living relatives, the great apes, take honey when they can. We suggest that honey has been part of the diet of our ancestors dating back to at least the earliest hominins. The earliest hominins, however, would have surely been less capable of acquiring as much honey as more recent, fully modern human hunter-gatherers. We discuss reasons for thinking our early ancestors would have acquired less honey than foragers ethnographically described, yet still significantly more than our great ape relatives.
    Journal of Human Evolution 04/2014; DOI:10.1016/j.jhevol.2014.03.006 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Honey is the most energy dense food in nature. It is therefore not surprising that, where it exists, honey is an important food for almost all hunter-gatherers. Here we describe and analyze widespread honey collecting among forgers and show that where it is absent, in arctic and subarctic habitats, honey bees are also rare to absent. Second, we focus on one hunter-gatherer society, the Hadza of Tanzania. Hadza men and women both rank honey as their favorite food. Hadza acquire seven types of honey. Hadza women usually acquire honey that is close to the ground while men often climb tall baobab trees to raid the largest bee hives with stinging bees. Honey accounts for a substantial proportion of the kilocalories in the Hadza diet, especially that of Hadza men. Cross-cultural forager data reveal that in most hunter-gatherers, men acquire more honey than women but often, as with the Hadza, women do acquire some. Virtually all warm-climate foragers consume honey. Our closest living relatives, the great apes, take honey when they can. We suggest that honey has been part of the diet of our ancestors dating back to at least the earliest hominins. The earliest hominins, however, would have surely been less capable of acquiring as much honey as more recent, fully modern human hunter-gatherers. We discuss reasons for thinking our early ancestors would have acquired less honey than foragers ethnographically described, yet still significantly more than our great ape relatives.
    Journal of Human Evolution 01/2014; · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Honeyguides (Indicatoridae, Piciformes) are unique among birds in several respects. All subsist primarily on wax, are obligatory brood parasites and one species engages in 'guiding' behavior in which it leads human honey hunters to bees' nests. This unique life history has likely shaped the evolution of their brain size and morphology. Here, we test that hypothesis using comparative data on relative brain and brain region size of honeyguides and their relatives: woodpeckers, barbets and toucans. Honeyguides have significantly smaller relative brain volumes than all other piciform taxa. Volumetric measurements of the brain indicate that honeyguides have a significantly larger cerebellum and hippocampal formation (HF) than woodpeckers, the sister clade of the honeyguides, although the HF enlargement was not significant across all of our analyses. Cluster analyses also revealed that the overall composition of the brain and telencephalon differs greatly between honeyguides and woodpeckers. The relatively smaller brains of the honeyguides may be a consequence of brood parasitism and cerophagy ('wax eating'), both of which place energetic constraints on brain development and maintenance. The inconclusive results of our analyses of relative HF volume highlight some of the problems associated with comparative studies of the HF that require further study.
    Brain Behavior and Evolution 04/2013; 81(3). DOI:10.1159/000348834 · 4.29 Impact Factor

Preview

Download
40 Downloads
Available from