Plowe, C. et al. World Antimalarial Resistance Network (WARN) III: Molecular markers for drug resistant malaria. Malar. J. 6, 121

Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1-480, Baltimore, Maryland 21201, USA.
Malaria Journal (Impact Factor: 3.11). 02/2007; 6(1):121. DOI: 10.1186/1475-2875-6-121
Source: PubMed


Molecular markers for drug resistant malaria represent public health tools of great but mostly unrealized potential value. A key reason for the failure of molecular resistance markers to live up to their potential is that data on the their prevalence is scattered in disparate databases with no linkage to the clinical, in vitro and pharmacokinetic data that are needed to relate the genetic data to relevant phenotypes. The ongoing replacement of older monotherapies for malaria by new, more effective combination therapies presents an opportunity to create an open access database that brings together standardized data on molecular markers of drug resistant malaria from around the world. This paper presents a rationale for creating a global database of molecular markers for drug resistant malaria and for linking it to similar databases containing results from clinical trials of drug efficacy, in vitro studies of drug susceptibility, and pharmacokinetic studies of antimalarial drugs, in a World Antimalarial Resistance Network (WARN). This database will be a global resource, guiding the selection of first line drugs for treating uncomplicated malaria, for preventing malaria in travelers and for intermittent preventive treatment of malaria in pregnant women, infants and other vulnerable groups. Perhaps most important, a global database for molecular markers of drug resistant malaria will accelerate the identification and validation of markers for resistance to artemisinin-based combination therapies and, thereby, potentially prolong the useful therapeutic lives of these important new drugs.

Download full-text


Available from: Christopher V Plowe, Oct 05, 2015
32 Reads
  • Source
    • "Availability of easy and rapid molecular markers would greatly facilitate this process and allows overcoming difficulties in the use of traditional methods for characterizing anti-malarial drug resistance. Moreover, the molecular surveillance of drug resistance markers such as pfcrt, pfmdr-1, dhfr, dhps & pfatp-6 associated with anti-malarial treatment failure provides sufficient evidence to policy makers for a renewed thinking on the existing drug policy [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: North-east India, being a corridor to South-east Asia, is believed to play an important role in transmitting drug resistant Plasmodium falciparum malaria to India and South Asia. North-east India was the first place in India to record the emergence of drug resistance to chloroquine as well as sulphadoxine/pyrimethamine. Presently chloroquine resistance is widespread all over the North-east India and resistance to other anti-malarials is increasing. In this study both in vivo therapeutic efficacy and molecular assays were used to screen the spectrum of drug resistance to chloroquine and sulphadoxine/pyrimethamine in the circulating P. falciparum strains. A total of 220 P. falciparum positives subjects were enrolled in the study for therapeutic assessment of chloroquine and sulphadoxine/pyrimethamine and assessment of point mutations conferring resistances to these drugs were carried out by genotyping the isolates following standard methods. Overall clinical failures in sulphadoxine/pyrimethamine and chloroquine were found 12.6 and 69.5% respectively, while overall treatment failures recorded were 13.7 and 81.5% in the two arms. Nearly all (99.0%) the isolates had mutant pfcrt genotype (76T), while 68% had mutant pfmdr-1 genotype (86Y). Mutation in dhps 437 codon was the most prevalent one while dhfr codon 108 showed 100% mutation. A total of 23 unique haplotypes at the dhps locus and 7 at dhfr locus were found while dhps-dhfr combined loci revealed 49 unique haplotypes. Prevalence of double, triple and quadruple mutations were common while 1 haplotype was found with all five mutated codons (F/AGEGS/T) at dhps locus. Detection of quadruple mutants (51I/59R/108N/164L) in the present study, earlier recorded from Car Nicobar Island, India only, indicates the presence of high levels of resistance to sulphadoxine/pyrimethamine in north-east India. Associations between resistant haplotypes and the clinical outcomes and emerging resistance in sulphadoxine/pyrimethamine in relation to the efficacy of the currently used artemisinin combination therapy are discussed.
    PLoS ONE 09/2014; 9(9):e105562. DOI:10.1371/journal.pone.0105562 · 3.23 Impact Factor
  • Source
    • "The ability to maximize the efficacy and longevity of anti-malarial drugs for malaria control will depend critically on intensive research to identify in vitro markers along with ex vivo and in vivo surveillance programmes. It is necessary to identify molecular markers that predict doxycycline resistance or decreased susceptibility in order that active surveillance can monitor temporal trends in parasite susceptibility [9]. Although there have been no reported clinical failures for the treatment of falciparum malaria with doxycycline, a Bayesian mixture modelling approach has distinguished three different in vitro phenotypic groups: low, medium and high doxycycline IC50 values, among 747 P. falciparum isolates obtained from 14 African countries over a nine-year period [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to evaluate the distribution of a series of independent doxycycline inhibitory concentration 50% (IC50) values to validate the trimodal distribution previously described and to validate the use of the pftetQ and pfmdt genes as molecular markers of decreased in vitro doxycycline susceptibility in Plasmodium falciparum malaria. Doxycycline IC50 values, from 484 isolates obtained at the French National Reference Centre for Imported Malaria (Paris) between January 2006 and December 2010, were analysed for the first time by a Bayesian mixture modelling approach to distinguish the different in vitro phenotypic groups by their IC50 values. Quantitative real-time polymerase chain reaction was used to evaluate the pftetQ and pfmdt copy numbers of 89 African P. falciparum isolates that were randomly chosen from the phenotypic groups. The existence of at least three doxycycline phenotypes was demonstrated. The mean doxycycline IC50 was significantly higher in the group with a pftetQ copy number >1 compared to the group with a pftetQ copy number = 1 (33.17 muM versus 17.23 muM) and the group with a pfmdt copy number >1 (28.28 muM versus 16.11 muM). There was a significant difference between the combined low and medium doxycycline IC50 group and the high IC50 group in terms of the per cent of isolates with one or more copy numbers of the pftetQ gene (0% versus 20.69%) or pfmdt gene (8.33% versus 37.93%). In the logistic regression model, the pfmdt and pftetQ copy numbers >1 (odds ratio = 4.65 and 11.47) were independently associated with the high IC50 group. Copy numbers of pftetQ and pfmdt are potential predictive molecular markers of decreased susceptibility to doxycycline.
    Malaria Journal 11/2013; 12(1):414. DOI:10.1186/1475-2875-12-414 · 3.11 Impact Factor
  • Source
    • "Molecular markers alone cannot be used to predict treatment outcomes in individual patients, because other factors such as immunity, nutritional status, haemoglobinopathies and variation in drug absorption and metabolism can also affect clinical outcomes [11-14]. However, validated molecular markers are useful tools for mapping and monitoring anti-malarial resistance at a population level and as a surveillance tool, to indicate an aggregated measure of increased risk for clinical failure [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparum has repeatedly evolved resistance to first-line anti-malarial drugs, thwarting efforts to control and eliminate the disease and in some period of time this contributed largely to an increase in mortality. Here a mathematical model was developed to map the spatiotemporal trends in the distribution of mutations in the P. falciparum dihydropteroate synthetase (dhps) gene that confer resistance to the anti-malarial sulphadoxine, and are a useful marker for the combination of alleles in dhfr and dhps that is highly correlated with resistance to sulphadoxine-pyrimethamine (SP). The aim of this study was to present a proof of concept for spatiotemporal modelling of trends in anti-malarial drug resistance that can be applied to monitor trends in resistance to components of artemisinin combination therapy (ACT) or other anti-malarials, as they emerge or spread. Prevalence measurements of single nucleotide polymorphisms in three codon positions of the dihydropteroate synthetase (dhps) gene from published studies of dhps mutations across Africa were used. A model-based geostatistics approach was adopted to create predictive surfaces of the dhps540E mutation over the spatial domain of sub-Saharan Africa from 1990-2010. The statistical model was implemented within a Bayesian framework and hence quantified the associated uncertainty of the prediction of the prevalence of the dhps540E mutation in sub-Saharan Africa. The maps presented visualize the changing prevalence of the dhps540E mutation in sub-Saharan Africa. These allow prediction of space-time trends in the parasite resistance to SP, and provide probability distributions of resistance prevalence in places where no data are available as well as insight on the spread of resistance in a way that the data alone do not allow. The results of this work will be extended to design optimal sampling strategies for the future molecular surveillance of resistance, providing a proof of concept for similar techniques to design optimal strategies to monitor resistance to ACT.
    Malaria Journal 07/2013; 12(1):249. DOI:10.1186/1475-2875-12-249 · 3.11 Impact Factor
Show more