Article

Plasticity and impact of the central renin-angiotensin system during development of ethanol dependence

University of Bologna, Bolonia, Emilia-Romagna, Italy
Journal of Molecular Medicine (Impact Factor: 4.74). 11/2007; 85(10):1089-97. DOI: 10.1007/s00109-007-0255-5
Source: PubMed

ABSTRACT Pharmacological and genetic interference with the renin-angiotensin system (RAS) seems to alter voluntary ethanol consumption. However, understanding the influence of the RAS on ethanol dependence and its treatment requires modeling the neuroadaptations that occur with prolonged exposure to ethanol. Increased ethanol consumption was induced in rats through repeated cycles of intoxication and withdrawal. Expression of angiotensinogen, angiotensin-converting enzyme, and the angiotensin II receptor, AT1a, was examined by quantitative reverse transcription polymerase chain reaction. Increased ethanol consumption after a history of dependence was associated with increased angiotensinogen expression in medial prefrontal cortex but not in nucleus accumbens or amygdala. Increased angiotensinogen expression also demonstrates that the astroglia is an integral part of the plasticity underlying the development of dependence. The effects of low central RAS activity on increased ethanol consumption were investigated using either spirapril, a blood-brain barrier-penetrating inhibitor of angiotensin-converting enzyme, or transgenic rats (TGR(ASrAOGEN)680) with reduced central angiotensinogen expression. Spirapril reduced ethanol intake in dependent rats compared to controls. After induction of dependence, TGR(ASrAOGEN)680 rats had increased ethanol consumption but to a lesser degree than Wistar rats with the same history of dependence. These data suggest that the central RAS is sensitized in its modulatory control of ethanol consumption in the dependent state, but pharmacological or genetic blockade of the system appears to be insufficient to halt the progression of dependence.

0 Followers
 · 
67 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: A single or repeated exposure to psychostimulants induces long-lasting neuroadaptative changes. Different neurotransmitter systems are involved in these responses including the neuropeptide angiotensin II. Our study tested the hypothesis that the neuroadaptative changes induced by amphetamine produce alterations in brain RAS components that are involved in the expression of the locomotor sensitization to the psychostimulant drug. Wistar male rats, pretreated with amphetamine were used 7 or 21 days later to study AT1 receptors by immunohistochemistry and western blot and also angiotensinogen mRNA and protein in caudate putamen and nucleus accumbens. A second group of animals was used to explore the possible role of Ang II AT1 receptors in the expression of behavioral sensitization. In these animals treated in the same way, bearing intra-cerebral cannula, the locomotor activity was tested 21 days later, after an amphetamine challenge injection and the animals received an AT1 blocker, losartan, or saline 5min before the amphetamine challenge. An increase of AT1 receptor density induced by amphetamine was found in both studied areas and a decrease in angiotensinogen mRNA and protein only in CPu at 21 days after treatment; meanwhile, no changes were established in NAcc. Finally, the increased locomotor activity induced by amphetamine challenge was blunted by losartan administration in CPu. No differences were detected in the behavioral sensitization when the AT1 blocker was injected in NAcc. Our results support the hypothesis of a key role of brain RAS in the neuroadaptative changes induced by amphetamine.
    Behavioural Brain Research 07/2014; DOI:10.1016/j.bbr.2014.07.021 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a ‘Diagnostic and Statistical Manual of Mental Disorders IV/V-like’ diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review.
    Addiction Biology 12/2014; 20(1). DOI:10.1111/adb.12187 · 5.93 Impact Factor