Neural basis of the emotional Stroop interference effect in major depression

Neuroimaging Research Group, Clinical Neuroscience, Institute of Psychiatry, King's College London, UK.
Psychological Medicine (Impact Factor: 5.94). 03/2008; 38(2):247-56. DOI: 10.1017/S0033291707001523
Source: PubMed


A mood-congruent sensitivity towards negative stimuli has been associated with development and maintenance of major depressive disorder (MDD). The emotional Stroop task assesses interference effects arising from the conflict of emotional expressions consistent with disorder-specific self-schemata and cognitive colour-naming instructions. Functional neuroimaging studies of the emotional Stroop effect advocate a critical involvement of the anterior cingulate cortex (ACC) during these processes.
Subjects were 17 medication-free individuals with unipolar MDD in an acute depressive episode (mean age 39 years), and 17 age-, gender- and IQ-matched healthy volunteers. In an emotional Stroop task, sad and neutral words were presented in various colours, and subjects were required to name the colour of words whilst undergoing functional magnetic resonance imaging (fMRI). Overt verbal responses were acquired with a clustered fMRI acquisition sequence.
Individuals with depression showed greater increases in response time from neutral to sad words relative to controls. fMRI data showed a significant engagement of left rostral ACC (BA 32) and right precuneus during sad words in patients relative to controls. Additionally, rostral ACC activation was positively correlated with latencies of negative words in MDD patients. Healthy controls did not have any regions of increased activation compared to MDD patients.
These findings provide evidence for a behavioural and neural emotional Stroop effect in MDD and highlight the importance of the ACC during monitoring of conflicting cognitive processes and mood-congruent processing in depression.

Download full-text


Available from: Nicholas David Walsh, Feb 25, 2014
310 Reads
    • "Several studies have consistently found heightened amygdala , in - sula and anterior cingulate cortex activation , regions that are crucial for the processing of emotional information , in clinically depressed patients relative to non - depressed subjects during the passive viewing of negatively valenced material ( Lee et al . , 2007 ; Mitterschiffthaler et al . , 2008 ; Peluso et al . , 2009 ) , suggesting that biases in encoding of negative information in depression may be associated with functional abnormalities in these brain areas . In addition , sustained amygdala activation has been also associated with increased self - reported rumination , a key factor in the maintenance of depressed mood ( S"
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Previous studies suggest that autonomic reactivity during encoding of emotional information could modulate the neural processes mediating mood-congruent memory. In this study, we use a point-process model to determine dynamic autonomic tone in response to negative emotions and its influence on long-term memory of major depressed subjects. Methods: Forty-eight patients with major depression and 48 healthy controls were randomly assigned to either neutral or emotionally arousing audiovisual stimuli. An adaptive point-process algorithm was applied to compute instantaneous estimates of the spectral components of heart rate variability [Low frequency (LF), 0.04-0.15Hz; High frequency (HF), 0.15-0.4Hz]. Three days later subjects were submitted to a recall test. Results: A significant increase in HF power was observed in depressed subjects in response to the emotionally arousing stimulus (p=0.03). The results of a multivariate analysis revealed that the HF power during the emotional segment of the stimulus was independently associated with the score of the recall test in depressed subjects, after adjusting for age, gender and educational level (Coef. 0.003, 95%CI, 0.0009-0.005, p=0.008). Limitations: These results could only be interpreted as responses to elicitation of specific negative emotions, the relationship between HF changes and encoding/recall of positive stimuli should be further examined. Conclusions: Alterations on parasympathetic response to emotion are involved in the mood-congruent cognitive bias observed in major depression. These findings are clinically relevant because it could constitute the mechanism by which depressed patients maintain maladaptive patterns of negative information processing that trigger and sustain depressed mood.
    Journal of Affective Disorders 10/2015; 190:19-25. DOI:10.1016/j.jad.2015.09.075 · 3.38 Impact Factor
  • Source
    • "The Emotional Stroop task continues to be widely used to study attentional biases for threat as a function of early childhood trauma (Wingenfeld et al., 2009), attachment (Atkinson et al., 2009), borderline personality disorder and posttraumatic stress disorder (Cisler et al., 2011), among others. It has also been used to identify the neural sources associated with emotion (Mitterschiffthaler et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: It is widely believed that threatening stimuli in our environment capture attention. Much of the core evidence for attentional capture by threatening stimuli comes from the Emotional Stroop task. Yet recent evidence suggests that the Emotional Stroop task does not measure attentional capture (e.g., Algom et al., 2004). The present paper assesses whether threat words can capture attention using a modified Stroop Dilution procedure (e.g., Kahneman & Chajczyk, 1983), where attentional capture by a threat word is inferred from a reduction in color-word interference for threat words compared to non-threat words (emotional Stroop Dilution). The outcome of the present experiments indicates that threat words can capture attention, but only when task demands do not require that a word be attended. It is suggested that threat words produce (1) cognitive slowing, and influence two processes of selective attention (2) attentional capture and (3) the ability to filter irrelevant dimensions of an attended stimulus. Copyright © 2015 Elsevier B.V. All rights reserved.
    Acta psychologica 07/2015; 159. DOI:10.1016/j.actpsy.2015.05.008 · 2.19 Impact Factor
  • Source
    • "As with structural findings, both medial and lateral prefrontal systems have been implicated. During negative affective processing tasks such as viewing sad or fearful faces, dorsolateral prefrontal areas reliably show reduced activation compared with controls,39–41 whereas the anterior cingulate cortex (ACC) shows increased activation.42–45 Functional alterations while processing negative stimuli have also been demonstrated in limbic regions, most notably in the amygdala, where exaggerated responses to negative stimuli are seen,40,43,46–49 whereas processing of positive stimuli such as monetary gains is associated with reduced activity in areas associated with reward processing such as the striatum.50–52 "
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, "machine learning" methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level.
    Neuropsychiatric Disease and Treatment 08/2014; 10:1509-22. DOI:10.2147/NDT.S50156 · 1.74 Impact Factor
Show more