Article

Evidence of slow maturation of the superior longitudinal fasciculus in early childhood by diffusion tensor imaging

Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, United States
NeuroImage (Impact Factor: 6.13). 12/2007; 38(2):239-47. DOI: 10.1016/j.neuroimage.2007.07.033
Source: PubMed

ABSTRACT While the majority of axonal organization is established by birth in mammalian brains, axonal wiring and pruning processes, as well as myelination, are known to extend to the postnatal periods, where environmental stimuli often play a major role. Normal axonal and myelin development of individual white matter tracts of human in this period is poorly understood and may have a major role in cognitive development of human. In this study, we applied diffusion tensor imaging and normalization-based population analyses to 44 preteen children and 30 adult images. We observed highly significant changes of fiber orientations at regions that correspond to the superior longitudinal fasciculus during the first 5 years. The result is attributed to slow axonal and/or myelin maturation of this tract, which is believed to be involved in language functions.

0 Followers
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Functional connectivity (FC) among language regions is decreased in adults with epilepsy compared to controls, but less is known about FC in children with epilepsy. We sought to determine if language FC is reduced in pediatric epilepsy, and examined clinical factors that associate with language FC in this population.Methods We assessed FC during an age-adjusted language task in children with left-hemisphere focal epilepsy (n = 19) compared to controls (n = 19). Time series data were extracted for three left regions of interest (ROIS) and their right homologues: inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and Wernicke's area (WA) using SPM8. Associations between FC and factors such as cognitive performance, language dominance, and epilepsy duration were assessed.ResultsChildren with epilepsy showed decreased interhemispheric connectivity compared to controls, particularly between core left language regions (IFG, WA) and their right hemisphere homologues, as well as decreased intrahemispheric right frontal FC. Increased intrahemispheric FC between left IFG and left WA was a positive predictor of language skills overall, and naming ability in particular. FC of language areas was not affected by language dominance, as the effects remained only when examining participants with left language dominance. Overall FC did not differ according to duration of epilepsy or age of onset.SignificanceFC during a language task is reduced in children, similar to findings in adults. In specific, children with left focal epilepsy demonstrated decreased interhemispheric FC in temporal and frontal language connections and decreased intrahemispheric right frontal FC. These differences were present near the onset of epilepsy. Greater FC between left language centers is related to better language ability. Our results highlight that connectivity of language areas has a developmental pattern and is related to cognitive ability.
    Epilepsia 12/2014; 56(2). DOI:10.1111/epi.12859 · 4.58 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.
    Methods 11/2014; 73. DOI:10.1016/j.ymeth.2014.10.025 · 3.22 Impact Factor

Full-text (2 Sources)

Download
36 Downloads
Available from
May 22, 2014