High resolution traction force microscopy based on experimental and computational advances.

University of Heidelberg, Heidelberg, Germany.
Biophysical Journal (Impact Factor: 3.83). 02/2008; 94(1):207-20. DOI: 10.1529/biophysj.107.113670
Source: PubMed

ABSTRACT Cell adhesion and migration crucially depend on the transmission of actomyosin-generated forces through sites of focal adhesion to the extracellular matrix. Here we report experimental and computational advances in improving the resolution and reliability of traction force microscopy. First, we introduce the use of two differently colored nanobeads as fiducial markers in polyacrylamide gels and explain how the displacement field can be computationally extracted from the fluorescence data. Second, we present different improvements regarding standard methods for force reconstruction from the displacement field, which are the boundary element method, Fourier-transform traction cytometry, and traction reconstruction with point forces. Using extensive data simulation, we show that the spatial resolution of the boundary element method can be improved considerably by splitting the elastic field into near, intermediate, and far field. Fourier-transform traction cytometry requires considerably less computer time, but can achieve a comparable resolution only when combined with Wiener filtering or appropriate regularization schemes. Both methods tend to underestimate forces, especially at small adhesion sites. Traction reconstruction with point forces does not suffer from this limitation, but is only applicable with stationary and well-developed adhesion sites. Third, we combine these advances and for the first time reconstruct fibroblast traction with a spatial resolution of approximately 1 microm.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Interaction of cells with extracellular matrix (ECM) regulates cell shape, differentiation and polarity. This effect has been widely observed in cells grown on substrates with various patterned features, stiffness and surface chemistry. It has been postulated that mechanical confinement of cells by the substrate causes a redistribution of tension in cytoskeletal proteins resulting in cytoskeletal reorganization through force sensitive pathways. However, the mechanisms for force transduction during reorganization remain unclear. In this study, using FRET based force sensors we have measured tension in an actin cross-linking protein, α-actinin, and followed reorganization of actin cytoskeleton in real time in HEK cells grown on patterned substrates. We show that the patterned substrates cause a redistribution of tension in α-actinin that coincides with cytoskeleton reorganization. Higher tension was observed in portions of cells where they form bridges across inhibited regions of the patterned substrates; the attachment to the substrate is found to release tension. Real time measurements of α-actinin tension and F-actin arrangement show that an increase in tension coincides with formation of F-actin bundles at the cell periphery during cell-spreading across inhibited regions, suggesting that mechanical forces stimulate cytoskeleton enhancement. Rho-ROCK inhibitor (Y27632) causes reduction in actinin tension followed by retraction of bridged regions. Our results demonstrate that changes in cell shape and expansion over patterned surfaces is a force sensitive process that requires actomyosin contractile force involving Rho-ROCK pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Biomechanics 01/2015; DOI:10.1016/j.jbiomech.2014.12.051 · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both subcellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions.
    eLife Sciences 12/2014; 3. DOI:10.7554/eLife.03282 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence suggests that the developmental process of epithelial-to-mesenchymal transition (EMT) is co-opted by cancer cells to metastasize to distant sites. This transition is associated with morphologic elongation and loss of cell-cell adhesions, though little is known about how it alters cell biophysical properties critical for migration. Here, we use multiple-particle tracking (MPT) microrheology and traction force cytometry to probe how genetic induction of EMT in epithelial MCF7 breast cancer cells changes their intracellular stiffness and extracellular force exertion, respectively, relative to an empty vector control. This analysis demonstrated that EMT alone was sufficient to produce dramatic cytoskeletal softening coupled with increases in cell-exerted traction forces. Microarray analysis revealed that these changes corresponded with down-regulation of genes associated with actin cross-linking and up-regulation of genes associated with actomyosin contraction. Finally, we show that this loss of structural integrity to expedite migration could inhibit mesenchymal cell proliferation in a secondary tumor as it accumulates solid stress. This work demonstrates that not only does EMT enable escape from the primary tumor through loss of cell adhesions but it also induces a concerted series of biophysical changes enabling enhanced migration of cancer cells after detachment from the primary tumor.-McGrail, D. J., Mezencev, R., Kieu, Q. M. N., McDonald, J. F., and Dawson, M. R. SNAIL-induced epithelial-to-mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene expression. © FASEB.
    The FASEB Journal 12/2014; DOI:10.1096/fj.14-257345 · 5.48 Impact Factor

Full-text (2 Sources)

Available from
Aug 19, 2014