Article

Salivary glucosyltransferase B as a possible marker for caries activity.

Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
Caries Research (Impact Factor: 2.5). 02/2007; 41(6):445-50. DOI: 10.1159/000107930
Source: PubMed

ABSTRACT Bacteria-derived glucosyltransferases (Gtf) (EC 2.4.1.5), through synthesizing glucan polymers from sucrose and starch hydrolysates, play an essential role in the etiology and pathogenesis of caries. We attempted to correlate the levels of Gtf in whole saliva with the prevalence of carious lesions in young children. We examined saliva from children who were either free of overt carious lesions, or had severe early childhood caries (mean dmfs = 18.72 +/- 9.0 SD), for Gtf by direct enzyme assay. The levels of GtfB, GtfC and GtfD from Streptococcus mutans in the saliva using monoclonal/specific antibodies in an enzyme-linked immunosorbent assay were determined. Multiple logistic regression analyses with model selection showed that GtfB levels correlated with dmfs values of the subjects (p = 0.006). There was no correlation between total Gtf activity as measured by direct enzyme assay and dmfs values. There was a strong correlation between mutans streptococci populations in saliva and caries activity. Collectively, these data show that GtfB levels in saliva correlate strongly with presence of clinical caries and with number of carious lesions in young children. It is also possible to measure different Gtfs, separately, in whole saliva. These observations may have important clinical implications, may lead to development of a chair side caries activity test and support the importance of GtfB in the pathogenesis of dental caries.

Full-text

Available from: Robert J Berkowitz, Jun 02, 2015
2 Followers
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dental caries is a major health problem worldwide. This disease results from improper interactions between oral microorganisms and host that stimulate the establishment of cariogenic biofilms on tooth surfaces, whose high and sustained acidogenicity promotes demineralization of tooth tissues. These interactions are modulated by environmental factors, among which diet has significant impact, especially regarding its carbohydrate content. Although microorganisms are recognized as having a central role in dental caries, current approaches for intervening in the establishment of cariogenic biofilms are limited. In this review, we focus on clinical studies supporting the role of mutans streptococci (MS) as promoters of cariogenic microbiota. Functions of MS in this process are analyzed under the current knowledge about the genetic and phenotypic diversity of Streptococcus mutans, the most well-known MS species. Effects of host immune responses on the establishment and pathogenesis of S. mutans are also discussed, further encouraging studies testing anti-MS therapies.
    03/2013; 1(1):70-78. DOI:10.1007/s40496-013-0008-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Streptococci are the pioneer strains in plaque formation and Streptococcus mutans are the main etiological agent of dental plaque and caries. In general, biofilm formation is a step-wise process, which begins by adhesion of planktonic cells to the surfaces. Evidences show that expression of glucosyltransferase B and C (gtfB and gtfC) and fructosyltransferase (ftf) genes play critical role in initial adhesion of S. mutans to the tooth surface which results in formation of dental plaques and consequently caries and other periodontal disease. The aim of this study was to determine the effect of biosurfactants produced by a probiotic strain; Lactobacillus casei (ATCC39392) on gene expression profile of gftB/C and tft of S. mutans (ATCC35668) using quantitative real-time PCR. The application of the prepared biosurfactant caused dramatic down regulation of all the three genes under study. The reduction in gene expression was statistically highly significant (for gtfB, P > 0.0002; for gtfC, P > 0.0063, and for ftf, P > 0.0057). Considerable downregulation of all three genes in the presence of the prepared biosurfactant comparing to untreated controls is indicative of successful inhibition of influential genes in bacterial adhesion phenomena. In view of the importance of glucosyltransferase gene products for S.mutans attachment to the tooth surface which is the initial important step in biofilm production and dental caries, further research in this field may lead to an applicable alternative for successful with least adverse side effects in dental caries prevention.
    11/2014; 3:231. DOI:10.4103/2277-9175.145729
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.
    Frontiers in Cellular and Infection Microbiology 02/2015; 5:10. DOI:10.3389/fcimb.2015.00010 · 2.62 Impact Factor