Salivary Glucosyltransferase B as a Possible Marker for Caries Activity

Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
Caries Research (Impact Factor: 2.28). 02/2007; 41(6):445-50. DOI: 10.1159/000107930
Source: PubMed


Bacteria-derived glucosyltransferases (Gtf) (EC, through synthesizing glucan polymers from sucrose and starch hydrolysates, play an essential role in the etiology and pathogenesis of caries. We attempted to correlate the levels of Gtf in whole saliva with the prevalence of carious lesions in young children. We examined saliva from children who were either free of overt carious lesions, or had severe early childhood caries (mean dmfs = 18.72 +/- 9.0 SD), for Gtf by direct enzyme assay. The levels of GtfB, GtfC and GtfD from Streptococcus mutans in the saliva using monoclonal/specific antibodies in an enzyme-linked immunosorbent assay were determined. Multiple logistic regression analyses with model selection showed that GtfB levels correlated with dmfs values of the subjects (p = 0.006). There was no correlation between total Gtf activity as measured by direct enzyme assay and dmfs values. There was a strong correlation between mutans streptococci populations in saliva and caries activity. Collectively, these data show that GtfB levels in saliva correlate strongly with presence of clinical caries and with number of carious lesions in young children. It is also possible to measure different Gtfs, separately, in whole saliva. These observations may have important clinical implications, may lead to development of a chair side caries activity test and support the importance of GtfB in the pathogenesis of dental caries.

Download full-text


Available from: Robert J Berkowitz, Oct 06, 2015
15 Reads
  • Source
    • "Overall, all Gtfs from S. mutans appear to play an important role in the formation of virulent plaque via production of a variety of glucans with distinct function and structure. Our observations support previous findings indicating the critical role of S. mutans Gtfs and their products in the pathogenesis of dental caries [Tanzer et al., 1974; Yamashita et al., 1993; Mattos-Granner et al., 2000; Vacca-Smith et al., 2007]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation.
    Caries Research 02/2011; 45(1):69-86. DOI:10.1159/000324598 · 2.28 Impact Factor
  • Source
    • "Higher content of insoluble glucans in the matrix is associated with increased cariogenicity of biofilms in humans [36]. A recent study showed that GtfB levels in saliva correlated with presence of clinical caries in humans [37]. Thus, the combination therapy would result in a less virulent (cariogenic) biofilm. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The association of specific bioactive flavonoids and terpenoids with fluoride can modulate the development of cariogenic biofilms by simultaneously affecting the synthesis of exopolysaccharides (EPS) and acid production by Streptococcus mutans, which enhanced the cariostatic effectiveness of fluoride in vivo. In the present study, we further investigated whether the biological actions of combinations of myricetin (flavonoid), tt-farnesol (terpenoid) and fluoride can influence the expression of specific genes of S. mutans within biofilms and their structural organization using real-time PCR and confocal fluorescence microscopy. Twice-daily treatment (one-minute exposure) during biofilm formation affected the gene expression by S. mutans both at early (49-h) and later (97-h) stages of biofilm development. Biofilms treated with combination of agents displayed lower mRNA levels for gtfB and gtfD (associated with exopolysaccharides synthesis) and aguD (associated with S. mutans acid tolerance) than those treated with vehicle-control (p < 0.05). Furthermore, treatment with combination of agents markedly affected the structure-architecture of S. mutans biofilms by reducing the biovolume (biomass) and proportions of both EPS and bacterial cells across the biofilm depth, especially in the middle and outer layers (vs. vehicle-control, p < 0.05). The biofilms treated with combination of agents were also less acidogenic, and had reduced amounts of extracellular insoluble glucans and intracellular polysaccharides than vehicle-treated biofilms (p < 0.05). The data show that the combination of naturally-occurring agents with fluoride effectively disrupted the expression of specific virulence genes, structural organization and accumulation of S. mutans biofilms, which may explain the enhanced cariostatic effect of our chemotherapeutic approach.
    BMC Microbiology 10/2009; 9(1):228. DOI:10.1186/1471-2180-9-228 · 2.73 Impact Factor
Show more