Article

The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22.

The EMMES Corporation, 401 N Washington St, Ste 700, Rockville, MD 20850-1707, USA.
Archives of Ophthalmology (Impact Factor: 4.49). 09/2007; 125(9):1225-32. DOI: 10.1001/archopht.125.9.1225
Source: PubMed

ABSTRACT To evaluate the relationship of dietary carotenoids, vitamin A, alpha-tocopherol, and vitamin C with prevalent age-related macular degeneration (AMD) in the Age-Related Eye Disease Study (AREDS).
Demographic, lifestyle, and medical characteristics were ascertained on 4519 AREDS participants aged 60 to 80 years at enrollment. Stereoscopic color fundus photographs were used to categorize participants into 4 AMD severity groups and a control group (participants with < 15 small drusen). Nutrient intake was estimated from a self-administered semiquantitative food frequency questionnaire at enrollment. Intake values were energy adjusted and classified by quintiles. The relationship between diet and AMD status was assessed using logistic regression analyses.
Dietary lutein/zeaxanthin intake was inversely associated with neovascular AMD (odds ratio [OR], 0.65; 95% confidence interval [CI], 0.45-0.93), geographic atrophy (OR, 0.45; 95% CI, 0.24-0.86), and large or extensive intermediate drusen (OR, 0.73; 95% CI, 0.56-0.96), comparing the highest vs lowest quintiles of intake, after adjustment for total energy intake and nonnutrient-based covariates. Other nutrients were not independently related to AMD.
Higher dietary intake of lutein/zeaxanthin was independently associated with decreased likelihood of having neovascular AMD, geographic atrophy, and large or extensive intermediate drusen.

0 Followers
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α) protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE) cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2) to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50-150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.
    BioMed Research International 01/2015; 2015:687386. DOI:10.1155/2015/687386 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macular degeneration is a progressive, bilateral eye disorder that damages the macula of the human eye. The most common form of macular degeneration is age-related macular degeneration (AMD), which is the leading cause of irreversible blindness in people older than 50 years in developed countries. Autosomal dominant Stargardt disease-3 (STGD3) is an inherited macular dystrophy that has clinical features similar to dry AMD, but occurs at a much earlier age. It is caused by a mutation in the elongation of very-long-chain fatty acids-like 4 (ELOVL4) gene, which is responsible for encoding the elongase enzyme that converts shorter chain fatty acids into C28-C38 very long-chain polyunsaturated fatty acids (VLCPUFAs, total number of carbons ≥24). Diets rich in long-chain polyunsaturated fatty acids (LCPUFAs) have inverse associations with the progression of AMD and STGD3, and a deficiency in retinal LCPUFAs and VLCPUFAs has been detected in AMD retinas and STGD3 animal models. This article systematically summarizes the roles of LCPUFAs and VLCPUFAs in AMD and STGD3, and discusses future research directions.
    Clinical Lipidology 10/2011; 6(5):593-613. DOI:10.2217/clp.11.41 · 0.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old). AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension). In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species) have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2) that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines), immune cells (macrophages), and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression.
    Journal of Ophthalmology 11/2014; 2014:582842. DOI:10.1155/2014/582842 · 1.94 Impact Factor

Full-text (2 Sources)

Download
19 Downloads
Available from
May 22, 2014