Article

A Synthetic Mechano Growth Factor E Peptide Enhances Myogenic Precursor Cell Transplantation Success

Unité de recherche en Génétique humaine, Centre Hospitalier de l'Université Laval, Ste-Foy, Québec, Canada.
American Journal of Transplantation (Impact Factor: 6.19). 11/2007; 7(10):2247-59. DOI: 10.1111/j.1600-6143.2007.01927.x
Source: PubMed

ABSTRACT Myogenic precursor cell (MPC) transplantation is a good strategy to introduce dystrophin expression in muscles of Duchenne muscular dystrophy (DMD) patients. Insulin-like growth factor (IGF-1) promotes MPC activities, such as survival, proliferation, migration and differentiation, which could enhance the success of their transplantation. Alternative splicing of the IGF-1 mRNA produces different muscle isoforms. The mechano growth factor (MGF) is an isoform, especially expressed after a mechanical stress. A 24 amino acids peptide corresponding to the C-terminal part of the MGF E domain (MGF-Ct24E peptide) was synthesized. This peptide had been shown to enhance the proliferation and delay the terminal differentiation of C(2)C(12) myoblasts. The present study showed that the MGF-Ct24E peptide improved human MPC transplantation by modulating their proliferation and differentiation. Indeed, intramuscular or systemic delivery of this synthetic peptide significantly promoted engraftment of human MPCs in mice. In vitro experiments demonstrated that the MGF-Ct24E peptide enhanced MPC proliferation by a different mechanism than the binding to the IGF-1 receptor. Moreover, MGF-Ct24E peptide delayed human MPC differentiation while having no outcome on survival. Those combined effects are probably responsible for the enhanced transplantation success. Thus, the MGF-Ct24E peptide is an interesting agent to increase MPC transplantation success in DMD patients.

0 Followers
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-like growth factor I (IGF-I) is a key regulator of muscle development and growth. The pre-pro-peptide produced by the Igf1 gene undergoes several post-translational processing steps to result in a secreted mature protein, which is thought to be the obligate ligand for the IGF-I receptor (IGF-IR). However, the significance of the additional forms and peptides produced from Igf1 is not clear. For instance, the C-terminal extensions called the E-peptides that are part of pro-IGF-I, have been implicated in playing roles in cell growth, including cell proliferation and migration and muscle hypertrophy in an IGF-IR independent manner. However, the activity of these peptides has been controversial. IGF-IR independent actions suggest the existence of an E-peptide receptor, yet such a protein has not been discovered. We propose a new concept: there is no E-peptide receptor, rather the E-peptides coordinate with IGF-I to modulate activity of the IGF-IR. Growing evidence reveals that the presence of an E-peptide alters IGF-I activity, whether as part of pro-IGF-I, or as a separate peptide. In this review, we will examine the past literature on IGF-I processing and E-peptide actions in skeletal muscle, address the previous attempts to separate IGF-I and E-peptide effects, propose a new model for IGF-I/E-peptide synergy, and suggest future experiments to test if the E-peptides truly modulate IGF-I activity.
    Frontiers in Endocrinology 03/2013; 4:42. DOI:10.3389/fendo.2013.00042
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal manipulation is a manual therapy approach commonly employed by chiropractors, osteopaths and manipulative physiotherapists in the treatment of back pain. It is characterised by a rapid high velocity, low amplitude thrust which commonly causes an audible 'pop' or 'cavitation' in the joint. Any beneficial effects are generally explained with reference to changes in vertebral joint movement. This paper looks at the process of spinal manipulation to see if there is reason to expect effects beyond simple changes in the biomechanics of the spine. It shows that during the process of spinal manipulation, rapid stretching of spinal muscles is inevitable. It goes on to review recent evidence that muscle stretch is a potent stimulus for the upregulation of a splice product of the insulin-like growth factor gene by the stretched muscle. Evidence that the product of this gene (mechano-growth factor; MGF) promotes muscle growth and repair (myotrophism) is presented, together with evidence that MGF promotes the growth and repair of neurones (neurotrophism). Against this background the hypothesis is proposed that one of the effects of spinal manipulation is to stretch spinal muscles which will upregulate MGF and result in local myotrophic and neurotrophic effects. This growth factor hypothesis represents a major departure from the biomechanical and biopsychosocial models currently used to explain the effects of spinal manipulation, and could provide the basis for further studies aimed at defining the molecular correlates of this type of manual therapy.
    Medical Hypotheses 09/2008; 71(5):715-21. DOI:10.1016/j.mehy.2008.06.038 · 1.15 Impact Factor