Altered expression of desmocollin 3, desmoglein 3, and β-catenin in oral squamous cell carcinoma: correlation with lymph node metastasis and cell proliferation

Northeastern University (Shenyang, China), Feng-t’ien, Liaoning, China
Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin (Impact Factor: 2.56). 11/2007; 451(5):959-66. DOI: 10.1007/s00428-007-0485-5
Source: PubMed

ABSTRACT Desmocollin 3 (Dsc3) and desmoglein 3 (Dsg3) are both transmembrane glycoproteins that belong to the cadherin family of calcium-dependent cell adhesion molecules. beta-Catenin is a member of the cadherin-catenin complex that mediates homotypic cell-cell adhesion and is also an important molecule in the wnt signaling pathway. In this study, we examined the simultaneous expression level of Dsc3, Dsg3, and beta-catenin in oral squamous cell carcinomas (OSCCs) and normal oral epithelia using immunohistochemistry. There was a significant correlation (p < 0.05) among the following variables in OSCCs: reduced or loss of expression of Dsc3, Dsg3, and beta-catenin compared to normal oral epithelium, reduced or loss of expression of Dsc3 and histological grade (moderately or poorly differentiated), and reduced or loss of expression of beta-catenin and lymph node metastasis. Furthermore, a positive correlation was found between reduced or loss of beta-catenin staining and reduced or loss of Dsc3 staining in lymph node metastatic cancer tissue (r = 0.734, p < 0.05). These results suggest an abnormal expression of Dsc3, Dsg3, and beta-catenin induced in the progression of oral carcinomas and that the Dsc3 expression level might be related to the regulation of beta-catenin in lymph node metastasis and cell proliferation in OSCCs.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.
    03/2015; 7(1):266-86. DOI:10.3390/cancers7010266
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Desmoglein 3 (DSG3) is a component of the desmosome, which confers strong cell-cell adhesion. Previously, an oncogenic function of DSG3 has been found in head neck cancer (HNC). Here, we investigated how this molecule contributes to the malignant phenotype. Because DSG3 is associated with plakoglobin, we examined whether these phenotypic alterations were mediated through the plakoglobin molecule. Immunoprecipitation and immunofluorescence staining revealed that DSG3 silencing disrupted its interaction with plakoglobin and induced plakoglobin translocation from the cytoplasm to the nucleus. Knockdown of DSG3 significantly increased the interaction of plakoglobin with the transcriptional factor TCF and suppressed the TCF/LEF transcriptional activity. These effects further conferred to reduced expression of the TCF/LEF downstream target genes, including c-myc, cyclin D1, and MMP-7. Functional analyses showed that DSG3 silencing reduced cell growth and arrested cells at G0/G1 phase. Besides, cell migration and invasion abilities were also decreased. These cellular results were confirmed using tumor xenografts in mice, as DSG3 silencing led to the suppressed tumor growth, plakoglobin translocation and reduced expression of TCF/LEF target genes in tumors. Therefore, our study shows that the desmosomal protein DSG3 additionally functions to regulate malignant phenotypes via nuclear signaling. In conclusion, we found that DSG3 functions as an oncogene and facilitates cancer growth and invasion in HNC cells through the DSG3-plakoglobin-TCF/LEF pathway.
    PLoS ONE 05/2013; 8(5):e64088. DOI:10.1371/journal.pone.0064088 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of adherens junction inactivation, typically by downregulation or mutation of the transmembrane core component E-cadherin, to cancer progression is well recognized. In contrast, the role of the desmosomal cadherin components of the related cell-cell adhesion junction, the desmosome, in cancer development has not been well explored. Here, we use mouse models to probe the functional role of desmosomal cadherins in carcinogenesis. Because mice lacking the desmosomal cadherin Desmoglein 3 (Dsg3) have revealed a crucial role for Dsg3 in cell-cell adhesion in stratified epithelia, we investigate the consequence of Dsg3 loss in two models of skin carcinogenesis. First, using Dsg3-/- keratinocytes, we show that these cells display adhesion defects in vitro and compromised tumor growth in allograft assays, suggesting that Dsg3 enables tumor formation in certain settings. In contrast, using an autochthonous model for SCC development in response to chronic UVB treatment, we discover a surprising lack of enhanced tumorigenesis in Dsg3-/- mice relative to controls, unlike mice lacking the desmosomal component Perp. Accordingly, there is no defect in the apoptotic response to UVB or enhanced immune cell infiltration upon Dsg3 loss that could promote tumorigenesis. Thus, Dsg3 does not display a clear function as a tumor suppressor in these mouse skin cancer models. Continued unraveling of the roles of Dsg3 and other desmosomal constituents in carcinogenesis in different contexts will be important for ultimately improving cancer diagnosis, prognostication, and treatment.
    PLoS ONE 11/2012; 7(11):e50024. DOI:10.1371/journal.pone.0050024 · 3.53 Impact Factor