Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification.

Institute for Clinical Research and Health Policy Studies, Tufts-New England Medical Center, Boston, Massachusetts 02111, USA.
JAMA The Journal of the American Medical Association (Impact Factor: 30.39). 10/2007; 298(10):1209-12. DOI: 10.1001/jama.298.10.1209
Source: PubMed

ABSTRACT There is growing awareness that the results of randomized clinical trials might not apply in a straightforward way to individual patients, even those within the trial. Although randomization theoretically ensures the comparability of treatment groups overall, there remain important differences between individuals in each treatment group that can dramatically affect the likelihood of benefiting from or being harmed by a therapy.1- 4 Averaging effects across such different patients can give misleading results to physicians who care for individual, not average, patients.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The primary objective of a Randomized Clinical Trial usually is to investigate whether one treatment is better than its alternatives on average. However, treatment effects may vary across different patient subpopulations. In contrast to demonstrating one treatment is superior to another on the average sense, one is often more concerned with the question that, for a particular patient, or a group of patients with similar characteristics, which treatment strategy is most appropriate to achieve a desired outcome. Various interaction tests have been proposed to detect treatment effect heterogeneity; however, they typically examine covariates one at a time, do not offer an integrated approach that incorporates all available information, and can greatly increase the chance of a false positive finding when the number of covariates is large. We propose a new permutation test for the null hypothesis of no interaction effects for any covariate. The proposed test allows us to consider the interaction effects of many covariates simultaneously without having to group subjects into subsets based on pre-specified criteria and applies generally to randomized clinical trials of multiple treatments. The test provides an attractive alternative to the standard likelihood ratio test, especially when the number of covariates is large. We illustrate the proposed methods using a dataset from the Treatment of Adolescents with Depression Study. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
    Statistics in Medicine 03/2015; 34(12). DOI:10.1002/sim.6457 · 2.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine whether some participants in the Diabetes Prevention Program were more or less likely to benefit from metformin or a structured lifestyle modification program. Post hoc analysis of the Diabetes Prevention Program, a randomized controlled trial. Ambulatory care patients. 3060 people without diabetes but with evidence of impaired glucose metabolism. Intervention groups received metformin or a lifestyle modification program with the goals of weight loss and physical activity. Development of diabetes, stratified by the risk of developing diabetes according to a diabetes risk prediction model. Of the 3081 participants with impaired glucose metabolism at baseline, 655 (21%) progressed to diabetes over a median 2.8 years' follow-up. The diabetes risk model had good discrimination (C statistic=0.73) and calibration. Although the lifestyle intervention provided a sixfold greater absolute risk reduction in the highest risk quarter than in the lowest risk quarter, patients in the lowest risk quarter still received substantial benefit (three year absolute risk reduction 4.9% v 28.3% in highest risk quarter; numbers needed to treat of 20.4 and 3.5, respectively). The benefit of metformin, however, was seen almost entirely in patients in the top quarter of risk of diabetes. No benefit was seen in the lowest risk quarter. Participants in the highest risk quarter averaged a 21.4% three year absolute risk reduction (number needed to treat 4.6). Patients at high risk of diabetes have substantial variation in their likelihood of receiving benefit from diabetes prevention treatments. Using this knowledge could decrease overtreatment and make prevention of diabetes far more efficient, effective, and patient centered, provided that decision making is based on an accurate risk prediction tool. © Sussman et al 2015.
    BMJ Clinical Research 02/2015; 350(feb19 2):h454. DOI:10.1136/bmj.h454 · 14.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In randomized controlled trials (RCTs), the most compelling need is to determine whether the treatment condition was more effective than control. However, it is generally recognized that not all participants in the treatment group of most clinical trials benefit equally. While subgroup analyses are often used to compare treatment effectiveness across pre-determined subgroups categorized by patient characteristics, methods to empirically identify naturally occurring clusters of persons who benefit most from the treatment group have rarely been implemented. This article provides a modeling framework to accomplish this important task. Utilizing information about individuals from the treatment group who had poor outcomes, the present study proposes an a priori clustering strategy that classifies the individuals with initially good outcomes in the treatment group into: (a) group GE (good outcome, effective), the latent subgroup of individuals for whom the treatment is likely to be effective and (b) group GI (good outcome, ineffective), the latent subgroup of individuals for whom the treatment is not likely to be effective. The method is illustrated through a re-analysis of a publically available data set from the National Institute on Drug Abuse. The RCT examines the effectiveness of motivational enhancement therapy from 461 outpatients with substance abuse problems. The proposed method identified latent subgroups GE and GI, and the comparison between the two groups revealed several significantly different and informative characteristics even though both subgroups had good outcomes during the immediate post-therapy period. As a diagnostic means utilizing out-of-sample forecasting performance, the present study compared the relapse rates during the long-term follow-up period for the two subgroups. As expected, group GI, composed of individuals for whom the treatment was hypothesized to be ineffective, had a significantly higher relapse rate than group GE (63% vs. 27%; χ (2) = 9.99, p-value = .002).