Article

The selectivity of protein kinase inhibitors: a further update.

Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
Biochemical Journal (Impact Factor: 4.78). 01/2008; 408(3):297-315. DOI: 10.1042/BJ20070797
Source: PubMed

ABSTRACT The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70-80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)-raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes.

6 Followers
 · 
161 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background In previous studies, neurons were documented to undergo apoptosis in the presence of microglia and live Borrelia burgdorferi, but not with either agent alone. Microscopy showed that several Toll-like receptors (TLRs) were upregulated in microglia upon B. burgdorferi exposure. It was hypothesized that the inflammatory milieu generated by microglia in the presence of B. burgdorferi results in neuronal apoptosis and that this inflammation was likely generated through TLR pathways. Methods In this study, we explored the role of several TLR and nucleotide-binding oligomerization domain containing 2 (NOD2)-dependent pathways in inducing inflammation in the presence of B. burgdorferi, using ribonucleic acid interference (RNAi) and/or inhibitors, in primary non-human primate (NHP) microglia. We also used several inhibitors for key mitogen-activated protein kinase (MAPK) pathways to determine the role of downstream pathways in inflammatory mediator release. Results The results show that the TLR2 pathway plays a predominant role in inducing inflammation, as inhibition of TLR2 with either small interfering RNA (siRNA) or inhibitor, in the presence of B. burgdorferi, significantly downregulated interleukin 6 (IL-6), chemokine (C-X-C) motif ligand 8 (CXCL8), chemokine (C-C) motif ligand 2 (CCL2), and tumor necrosis factor (TNF) production. This was followed by TLR5, the silencing of which significantly downregulated IL-6 and TNF. The role of TLR4 was inconclusive as a TLR4-specific inhibitor and TLR4 siRNA had opposing effects in the presence of B. burgdorferi. Silencing of NOD2 by siRNA in the presence of B. burgdorferi significantly upregulated IL-6, CCL2, and TNF. Downstream signaling involved the adaptor molecule myeloid differentiation primary response 88 (MyD88), as expected, as well as the MAPK pathways, with extracellular signal-regulated kinase (ERK) being predominant, followed by Jun N-terminal kinase (JNK) and p38 pathways. Conclusions Several receptors and pathways, with both positive and negative effects, mediate inflammation of primary microglia in response to B. burgdorferi, resulting in a complex, tightly regulated immune network.
    Journal of Neuroinflammation 03/2015; 12. DOI:10.1186/s12974-015-0274-z · 4.90 Impact Factor
  • Source
  • Source

Preview

Download
6 Downloads
Available from