Article

4-arylcyclohexylalanine analogs as potent, selective, and orally active inhibitors of dipeptidyl peptidase IV.

Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA.
Bioorganic & Medicinal Chemistry Letters (Impact Factor: 2.34). 12/2007; 17(21):5806-11. DOI: 10.1016/j.bmcl.2007.08.049
Source: PubMed

ABSTRACT A novel series of 4-arylcyclohexylalanine DPP-4 inhibitors was synthesized and tested for inhibitory activity as well as selectivity over the related proline-specific enzymes DPP-8 and DPP-9. Optimization of this series led to 28 (DPP-4 IC(50)=4.8 nM), which showed an excellent pharmacokinetic profile across several preclinical species. Evaluation of 28 in an oral glucose tolerance test demonstrated that this compound effectively reduced glucose excursion in lean mice.

0 Bookmarks
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dipeptidyl peptidase-4 (DPP-4) is one of the widely explored novel targets for Type 2 diabetes mellitus (T2DM) currently. Research has been focused on the strategy to preserve the endogenous glucagon like peptide (GLP)-1 activity by inhibiting the DPP-4 action. The DPP-4 inhibitors are weight neutral, well tolerated and give better glycaemic control over a longer duration of time compared to existing conventional therapies. The journey of DPP-4 inhibitors in the market started from the launch of sitagliptin in 2006 to latest drug teneligliptin in 2012. This review is mainly focusing on the recent medicinal aspects and advancements in the designing of DPP-4 inhibitors with the therapeutic potential of DPP-4 as a target to convey more clarity in the diffused data.
    European Journal of Medicinal Chemistry 01/2014; 74C:574-605. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dipeptidyl peptidase IV (DPP4) is an important target for the treatment of type II diabetes mellitus. Inhibition of DPP4 will improve glycemic control in such patients by preventing the rapid breakdown and thereby prolonging the physiological actions of incretin hormones. Known DPP4 inhibitors (including marketed drugs and those drug candidates) appear to share similar structural features: the cyanopyrrolidine moieties, the xanthenes/pyrimidine parts and amino-like linkages. In this study, a multi-step virtual screening strategy including both rigid and flexible docking was employed to search for novel structures with DPP4 inhibition. From SPECS database, consisting of over 190,000 commercially available compounds, 99 virtual hits were picked up and 15 of them were eventually identified to have DPP4 inhibitory activities at 5 ~ 50 μM. Diverse structures of our compounds were out of usual structural categories. Hence a pharmacophore model was built to further explore their common binding features on the enzyme. The results provided a new pathway for the discovery of DPP4 inhibitors and would be helpful for further optimization of DPP4 inhibitors.
    Journal of Molecular Modeling 03/2012; 18(9):4033-42. · 1.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There has been great interest in determining whether natural products show biological activity toward protein targets of pharmacological relevance. One target of particular interest is DPP-IV whose most important substrates are incretins that, among other beneficial effects, stimulates insulin biosynthesis and secretion. Incretins have very short half-lives because of their rapid degradation by DPP-IV and, therefore, inhibiting this enzyme improves glucose homeostasis. As a result, DPP-IV inhibitors are of considerable interest to the pharmaceutical industry. The main goals of this study were (a) to develop a virtual screening process to identify potential DPP-IV inhibitors of natural origin; (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits; and (c) to use the most active hit for predicting derivatives with higher binding affinities for the DPP-IV binding site. We predicted that 446 out of the 89,165 molecules present in the natural products subset of the ZINC database would inhibit DPP-IV with good ADMET properties. Notably, when these 446 molecules were merged with 2,342 known DPP-IV inhibitors and the resulting set was classified into 50 clusters according to chemical similarity, there were 12 clusters that contained only natural products for which no DPP-IV inhibitory activity has been previously reported. Nine molecules from 7 of these 12 clusters were then selected for in vitro activity testing and 7 out of the 9 molecules were shown to inhibit DPP-IV (where the remaining two molecules could not be solubilized, preventing the evaluation of their DPP-IV inhibitory activity). Then, the hit with the highest activity was used as a lead compound in the prediction of more potent derivatives. We have demonstrated that our virtual-screening protocol was successful in identifying novel lead compounds for developing more potent DPP-IV inhibitors.
    PLoS ONE 01/2012; 7(9):e44971. · 3.53 Impact Factor

Similar Publications