Myocardial reperfusion injury.

Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, United Kingdom.
New England Journal of Medicine (Impact Factor: 54.42). 10/2007; 357(11):1121-35. DOI: 10.1056/NEJMra071667
Source: PubMed
1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complexity of a common inflammatory disease is influenced by multiple genetic and environmental factors contributing to the susceptibility of disease. Studies have reported that these exogenous and endogenous components may perturb the balance of innate immune response by activating the NLRP3 inflammasome. The multimeric NLRP3 complex results in the caspase-1 activation and the release of potent inflammatory cytokines, like IL-1β. Several studies have been performed on the association of the genetic alterations in genes encoding NLRP3 and CARD8 with the complex diseases with inflammatory background, like inflammatory bowel disease, cardiovascular diseases, rheumatoid arthritis, and type 1 diabetes. The aim of the present review is therefore to summarize the literature regarding genetic alterations in these genes and their association with health and disease.
    Mediators of Inflammation 01/2015; 2015:10. DOI:10.1155/2015/846782 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Mitochondria are a major source of reactive oxygen species (ROS) in the cell, particularly of superoxide and hydrogen peroxide. A number of dedicated enzymes regulate the conversion and consumption of superoxide and hydrogen peroxide in the intermembrane space and the matrix of mitochondria. Nevertheless, hydrogen peroxide can also interact with many other mitochondrial enzymes, particularly those with reactive cysteine residues, modulating their reactivity in accordance with changes in redox conditions. In this review we will describe the general redox systems in mitochondria of animals, fungi and plants and discuss potential target proteins that were proposed to contain regulatory thiol switches.
    Biological Chemistry 01/2015; DOI:10.1515/hsz-2014-0293 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to find an effective drug cocktail pretreatment to protect myocardial tissue of the heart from ischemia-reperfusion (I/R) injury. The mechanisms underlying the effects of the drug cocktail were subsequently explored in order to expand the application of Dang-gui-si-ni-tang (DGSN), a Traditional Chinese Medicine. The active components of DGSN in the serum following oral administration were investigated using high-performance liquid chromatography. The activity of superoxide dismutase (SOD) and malondialdehyde (MDA) levels were then analyzed to show the effect of the active components in the treatment of myocardial I/R injury. An L16 (4(4)) orthogonal experiment was utilized to determine the most effective cocktail mix and the mechanism underlying the effect of this mix on myocardial I/R injury was investigated. It was observed that FCG, a mixture of glycyrrhizic (50 mg/kg), cinnamic (200 mg/kg) and ferulic (300 mg/kg) acid, was the optimal drug cocktail present in DGSN. This was absorbed into the blood following oral administration and was shown to decrease MDA levels and increase the activity of SOD. In conclusion, the findings suggest that FCG, a combination of active ingredients in the DGSN decoction, can be absorbed into the blood and protect the myocardium from I/R injury.
    Experimental and therapeutic medicine 02/2015; 9(2):435-445. DOI:10.3892/etm.2014.2134 · 0.94 Impact Factor