Sensitive biosensor array using surface plasmon resonance on metallic nanoslits

Academia Sinica, Research Center for Applied Sciences, 128 Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.
Journal of Biomedical Optics (Impact Factor: 2.86). 01/2007; 12(4):044023. DOI: 10.1117/1.2772296
Source: PubMed


Chip-based biosensor arrays for label-free and high-throughput detection were fabricated and tested. The sensor array was composed of a 150-nm-thick, 50-nm-gap, and 600-nm-period gold nanoslits. Each array size was 100 mumx100 mum. A transverse-magnetic polarized wave in these metallic nanostructures generated resonant surface plasmons at a wavelength of about 800 nm in a water environment. Using the resonant wavelength shift in the nanoslit array, we achieved detection sensitivity up to 668 nm per refractive index unit, about 1.7 times larger than that reported on an array of nanoholes. An antigen-antibody interaction experiment in an aqueous environment verified the sensitivity in a surface binding event.

Download full-text


Available from: Pei-Kuen Wei, Oct 02, 2015
21 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, discoveries and advances that utilise nano-scale (10^-9m) structures and associated phenomena have led to a number of entirely new areas of research in the fields of physics, chemistry, biology, and materials science. The photonic field of plasmonics is the study of light interaction with nanometer-scaled metal-dielectric features, which gives rise to a variety of phenomena, including surface plasmon resonance, localised surface plasmon resonance, and metal enhanced fluorescence. The focus of this thesis is on the development and characterisation of nanophotonic devices, which utilise plasmonic phenomena and have potential for sensor applications. During the course of this research a surface plasmon resonance analysis platform was devised, which utilises the gold grating of commercially available compact disks as the sensing substrate. This measurement method offers a high resolution refractive index analysis of gases and surface chemistry and is capable of analysing a large number of samples by scanning over the entire disk surface. The system implements a method of phase-polarisation contrast to improve the sensing performance. It enhances signal detection through redistributing the residual p-polarised waves, which have been strongly absorbed by the surface plasmon resonance substrate/sensor. This effectively lowers the reflected light intensity at the surface plasmon resonance minimum. The scheme results in the deepening of the intensity minimum to below 3.5% reflection and the enhancement of resonance to non-resonance contrast by up to 14 times, and thereby increasing sensitivity. A range of new nanophotonic structures have been modelled, developed, fabricated, and characterised, which we call wavelength and polarisation selective polariton generators (SPGs). These polarisation-sensitive structures combine a tuneable plasmon resonator and a subwavelength aperture to selectively generate and transmit polaritons of a desired wavelength through a central nanohole. Individual SPGs permit modulation of transmission intensity, with calculated enhanced optical transmission (ratio of output to input flux) of up to 10 and up to 4-fold measured amplitude modulation. The paired SPGs gave rise to multiple spectrally discrete transmission peaks which, when modulated, provide a multi-state operation in a single device. The measured amplitude modulation was up to 10-fold. For the linearly continuous SPG, by controlling the polarisation as a tuning variable, it selectively generated and transported polaritons of a desired wavelength. It exhibited a spectral shift of 40 nm over the full range of polarisation angles. The modelled enhanced optical transmission was calculated to be up to 17.2. An instrument was developed for measuring and characterising light transmission through single nanoholes, nanohole arrays, and other complex structures. The operational characteristics of these elements show close agreement between model predictions and experimental data. It also demonstrates new designs of plasmonic structures which utilise selective behaviour based on the polarisation of incident light.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimental and theoretical study of sensors based on enhanced transmission through periodic metal nanoslits is presented. Our approach consists of the design of one-dimensional nanoslits array and its application in sensing for water quality control. Rigorous coupled waves analysis was used for the design and fit to the experimental data. Two types of surface plasmon resonance excitations are shown to be possible, one at the upper grating–analyte interface and one at the lower grating–substrate interface. This latter resonance is shown to be affected by the multiple interference or cavity-type effects. Those structures were fabricated by deposition of the metal layer and electron beam lithography of the nanostructure. We found that Ag-based periodic array exhibits the highest sensitivity to refractive index variations. Sensitivity enhancement was measured by ethanol concentrations in water. Stability of the Ag-based sensor was improved by covering the grating with less than 15nm polymethyl methacrylate capping layer without deterioration of the sensitivity.
    Plasmonics 12/2009; 4(4):281-292. DOI:10.1007/s11468-009-9104-4 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The detection sensitivities of gap plasmons in gold nanoslit arrays are studied and compared with surface plasmons on outside surface. The nanoslit arrays were fabricated in a 130 nm-thick gold film with various slit widths. For transverse-magnetic (TM) incident wave, the 600 nm-period nanoslit array shows two distinguishable transmission peaks corresponding to the resonances of gap plasmons and surface plasmons, respectively. The surface sensitivities for both modes were compared by coating thin SiO(2) film and different biomolecules on the nanoslit arrays. Our experimental results verify gap plasmons are more sensitive than conventional surface plasmons. Its detection sensitivity increases with the decrease of slit width. The gap plasmon is one order of magnitude sensitive than the surface plasmon for slit widths smaller than 30 nm. We attribute this high sensitivity to the large overlap between biomolecules and nanometer-sized gap plasmons.
    Biosensors & Bioelectronics 05/2008; 24(2):210-5. DOI:10.1016/j.bios.2008.03.044 · 6.41 Impact Factor
Show more