64Cu-Labeled triphenylphosphonium and triphenylarsonium cations as highly tumor-selective imaging agents.

School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.
Journal of Medicinal Chemistry (Impact Factor: 5.61). 10/2007; 50(21):5057-69. DOI: 10.1021/jm0704088
Source: PubMed

ABSTRACT This report presents synthesis and evaluation of the 64Cu-labeled triphenylphosphonium (TPP) cations as new radiotracers for imaging tumors by positron emission tomography. Biodistribution properties of 64Cu-L1, 64Cu-L2, 64Cu-L3, and 99mTc-Sestamibi were evaluated in athymic nude mice bearing U87MG human glioma xenografts. The most striking difference is that 64Cu-L1, 64Cu-L2, and 64Cu-L3 have much lower heart uptake (<0.6% ID/g) than 99mTc-Sestamibi ( approximately 18% ID/g) at >30 min p.i. Their tumor/heart ratios increase steadily from approximately 1 at 5 min p.i. to approximately 5 at 120 min p.i. The tumor/heart ratio of 64Cu-L3 is approximately 40 times better than that of 99mTc-Sestamibi at 120 min postinjection. Results from in vitro assays show that 64Cu-L1 is able to localize in tumor mitochondria. The tumor is clearly visualized in the tumor-bearing mice administered with 64Cu-L1 as 30 min postinjection. The 64Cu-labeled TPP/TPA cations are very selective radiotracers that are able to provide the information of mitochondrial bioenergetic function in tumors by monitoring mitochondrial potential in a noninvasive fashion.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Four new copper(II) complexes containing phosphonium substituted hydrazone (L) with the formulations [CuL]Cl(3), [Cu(phen)L]Cl(4), [Cu(bpy)L]Cl(5), [Cu(dbpy)L]Cl(6), (where L = doubly deprotonated hydrazone; phen = 1,10'-phenanthroline; bpy = 2,2'-bipyridine; dbpy = 5,5'-dimethyl-2,2'-bipyridine) have been synthesized. The compounds were characterized by elemental analysis, spectroscopic methods and in the case of crystalline products by X-ray crystallography. The cytotoxicity and topoisomerase I (topo I) inhibition activities of these compounds were studied. It is noteworthy that the addition of N,N-ligands to the copper(II) complex lead to the enhancement in the cytotoxicity of the compounds, especially against human prostate adenocarcinoma cell line (PC-3). Complex 4 exhibits the highest activity against PC-3 with the IC50 value of 3.2 μΜ. The complexes can also inhibit topo I through the binding to DNA and the enzyme.
    European journal of medicinal chemistry 02/2014; 76C:397-407. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The enhanced negative mitochondrial membrane potential of tumor cells can increase the cell accumulation of triphenylphosphonium (TPP) derivatives, which prompted us to investigate TPP-containing Re(I)/(99m)Tc organometallic compounds as probes for in vivo targeting of energized mitochondria. Novel compounds (Re1-Re4/Tc1-Tc4) were obtained with bifunctional chelators of the pyrazole-diamine (N,N,N-donors) and pyrazole-aminocarboxylic (N,N,O-donors) type, functionalized with TPP pharmacophores that have been introduced at the central amine of the chelators using different spacers. In this way, dicationic (Re1-Re2, Tc1-Tc2) and monocationic (Re3-Re4, Tc3-Tc4) complexes with variable lipophilicity were synthesized. The (99m)Tc complexes (Tc1-Tc4) are highly stable under physiological conditions and their chemical identification was done by HPLC comparison with the Re congeners (Re1-Re4), which were fully characterized by common analytical techniques (electrospray ionization mass spectrometry (ESI-MS), IR, multinuclear NMR). The in vitro biological evaluation of Tc1-Tc4 was performed in a panel of human tumor cell lines (PC-3, MCF-7 and H69), including cell lines overexpressing P-glycoprotein (MCF-7/MDR1 and H69/Lx4), and in isolated mitochondria. All the tested complexes showed a low to moderate cellular and mitochondrial uptake and did not undergo significant P-glycoprotein (Pgp)-mediated efflux processes. In particular, the dication Tc2 and the monocation Tc4 presented the highest cellular and mitochondrial uptake. Their cellular uptake was shown to depend on the mitochondrial (Δψm) and plasma membrane (Δψp) potentials. Altogether, the biological properties of these compounds suggest that they might be relevant for the design of radioactive metalloprobes for in vivo targeting of mitochondria.
    Journal of inorganic biochemistry 02/2013; 123C:34-45. · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first bifunctional Gd(III) complexes covalently bound to arylphosphonium cations and the first tumour-cell selective mitochondrial agents designed for potential application in binary cancer therapies are reported. The highest in vitro cellular uptake for any Gd complex reported to date is described, with levels exceeding 10(10) Gd atoms per tumour cell.
    Chemical Communications 12/2013; · 6.38 Impact Factor