Methylation Status of the Reelin Promoter Region in the Brain of Schizophrenic Patients

Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.
Biological psychiatry (Impact Factor: 9.47). 03/2008; 63(5):530-3. DOI: 10.1016/j.biopsych.2007.07.003
Source: PubMed

ABSTRACT Hypermethylation of the reelin (RELN) promoter region and the reduced levels of its messenger RNA and protein have been implicated in the pathophysiology of schizophrenia. We intended a technical replication of recent studies that observed hypermethylation of CpG or CpNpG sites in the RELN promoter region in the brain of schizophrenic patients.
The DNA methylation status of the promoter region of RELN was examined by using the pyrosequencing method in the prefrontal cortices of 14 patients with schizophrenia and 13 control subjects.
All of the CpG and two proposed CpNpG sites analyzed showed no detectable DNA methylation (< 5%) in both control subjects and patients with schizophrenia. No detectable DNA methylation was observed in both gray and white matter, excluding the possibility of cellular heterogeneity of start materials.
We did not confirm the hypermethylation of the RELN promoter region in the brains of schizophrenic patients, suggested in the previous studies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on postmortem brain studies, our overarching epigenetic hypothesis is that chronic schizophrenia (SZ) is a psychopathological condition involving dysregulation of the dynamic equilibrium among DNA methylation/demethylation network components and the expression of SZ target genes, including GABAergic and glutamatergic genes. SZ has a natural course, starting with a prodromal phase, a first episode that occurs in adolescents or in young adults, and later deterioration over the adult years. Hence, the epigenetic status at each neurodevelopmental stage of the disease cannot be studied just in postmortem brain of chronic SZ patients, but requires the use of neurodevelopmental animal models. We have directed the focus of our research toward studying the epigenetic signature of the SZ brain in the offspring of dams stressed during pregnancy (PRS mice). Adult PRS mice have behavioral deficits reminiscent of behaviors observed in psychotic patients. The adult PRS brain, like that of postmortem chronic SZ patients, is characterized by a significant increase in DNA methyltransferase 1, Tet methylcytosine dioxygenase 1 (TET1), 5-methylcytosine, and 5-hydroxymethylcytosine at SZ candidate gene promoters and a reduction in the expression of glutamatergic and GABAergic genes. In PRS mice, measurements of epigenetic biomarkers for SZ can be assessed at different stages of development with the goal of further elucidating the pathophysiology of this disease and predicting treatment responses at specific stages of the illness, with particular attention to early detection and possibly early intervention.
    Progress in molecular biology and translational science 01/2014; 128:89-101. DOI:10.1016/B978-0-12-800977-2.00004-8 · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The down regulation of glutamic acid decarboxylase67 (GAD1), reelin (RELN), and BDNF expression in brain of schizophrenia (SZ) and bipolar (BP) disorder patients is associated with overexpression of DNA methyltransferase1 (DNMT1) and ten-eleven translocase methylcytosine dioxygenase1 (TET1). DNMT1 and TET1 belong to families of enzymes that methylate and hydroxymethylate cytosines located proximal to and within cytosine phosphodiester guanine (CpG) islands of many gene promoters, respectively. Altered promoter methylation may be one mechanism underlying the down-regulation of GABAergic and glutamatergic gene expression. However, recent reports suggest that both DNMT1 and TET1 directly bind to unmethylated CpG rich promoters through their respective Zinc Finger (ZF-CXXC) domains. We report here, that the binding of DNMT1 to GABAergic (GAD1, RELN) and glutamatergic (BDNF-IX) promoters is increased in SZ and BP disorder patients and this increase does not necessarily correlate with enrichment in promoter methylation. The increased DNMT1 binding to these promoter regions is detected in the cortex but not in the cerebellum of SZ and BP disorder patients, suggesting a brain region and neuron specific dependent mechanism. Increased binding of DNMT1 positively correlates with increased expression of DNMT1 and with increased binding of MBD2. In contrast, the binding of TET1 to RELN, GAD1 and BDNF-IX promoters failed to change. These data are consistent with the hypothesis that the down-regulation of specific GABAergic and glutamatergic genes in SZ and BP disorder patients may be mediated, at least in part, by a brain region specific and neuronal-activity dependent DNMT1 action that is likely independent of its DNA methylation activity. Copyright © 2014. Published by Elsevier B.V.
    Schizophrenia Research 12/2014; DOI:10.1016/j.schres.2014.10.030 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia (SZ) and bipolar disorder (BPD) patients show a downregulation of GAD67, reelin (RELN), brain-derived neurotrophic factor (BDNF), and other genes expressed in telencephalic GABAergic and glutamatergic neurons. This downregulation is associated with the enrichment of 5-methylcytosine and 5-hydroxymethylcytosine proximally at gene regulatory domains at the respective genes. A pharmacological strategy to reduce promoter hypermethylation and to induce a more permissive chromatin conformation is to administer drugs, such as the histone deacetylase (HDAC) inhibitor valproate (VPA), that facilitate chromatin remodeling. Studies in mouse models of SZ indicate that clozapine induces DNA demethylation at relevant promoters, and that this action is potentiated by VPA. By activating DNA demethylation, clozapine or its derivatives with VPA or other more potent and selective HDAC inhibitors may be a promising treatment strategy to correct the gene expression deficits detected in postmortem brain of SZ and BPD patients.
    Dialogues in clinical neuroscience 09/2014; 16(3):419-29.