Article

Decoding of dopaminergic mesolimbic activity and depressive behavior.

Leslie Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.
Journal of Molecular Neuroscience (Impact Factor: 2.76). 02/2007; 32(1):72-9. DOI: 10.1007/s12031-007-0016-5
Source: PubMed

ABSTRACT Dopaminergic mesolimbic and mesocortical systems are involved in hedonia and motivation, two core symptoms of depression. However, their role in the pathophysiology of depression and their manipulation to treat depression has received little attention. Previously, we showed decreased limbic dopamine (DA) neurotransmission in an animal model of depression, Flinder sensitive line (FSL) rats. Here we describe a high correlation between phase-space algorithm of bursting-like activity of DA cells in the ventral tegmental area (VTA) and efficiency of DA release in the accumbens. This bursting-like activity of VTA DA cells of FSL rats is characterized by a low dimension complexity. Treatment with the antidepressant desipramine affected both the dimension complexity of cell firing in the VTA and rate of DA release in the accumbens, as well as alleviating depressive-like behavior. Our findings indicate the potential usefulness of monitoring limbic dopaminergic dynamics in combination with non-linear analysis. Decoding the functionality of the dopaminergic system may help in development of future antidepressant drugs.

0 Bookmarks
 · 
172 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mania is associated with increased activity, whereas psychomotor retardation is often found in bipolar depression. Actigraphy is a promising tool for monitoring phase shifts and changes following treatment in bipolar disorder. The aim of this study was to compare recordings of motor activity in mania, bipolar depression and healthy controls, using linear and nonlinear analytical methods. Recordings from 18 acutely hospitalized inpatients with mania were compared to 12 recordings from bipolar depression inpatients and 28 healthy controls. 24-hour actigraphy recordings and 64-minute periods of continuous motor activity in the morning and evening were analyzed. Mean activity and several measures of variability and complexity were calculated. Patients with depression had a lower mean activity level compared to controls, but higher variability shown by increased standard deviation (SD) and root mean square successive difference (RMSSD) over 24 hours and in the active morning period. The patients with mania had lower first lag autocorrelation compared to controls, and Fourier analysis showed higher variance in the high frequency part of the spectrum corresponding to the period from 2-8 minutes. Both patient groups had a higher RMSSD/SD ratio compared to controls. In patients with mania we found an increased complexity of time series in the active morning period, compared to patients with depression. The findings in the patients with mania are similar to previous findings in patients with schizophrenia and healthy individuals treated with a glutamatergic antagonist. We have found distinctly different activity patterns in hospitalized patients with bipolar disorder in episodes of mania and depression, assessed by actigraphy and analyzed with linear and nonlinear mathematical methods, as well as clear differences between the patients and healthy comparison subjects.
    PLoS ONE 02/2014; 9(2):e89574. DOI:10.1371/journal.pone.0089574 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deep brain stimulation (DBS) significantly alleviates symptoms in various neurological disorders. Current research focuses on developing programmed stimulation protocols for customization to individual symptoms. However, the therapeutic mechanism of action of programmed DBS (pDBS) is poorly understood. We previously demonstrated that pDBS in the ventral tegmental area (VTA) normalizes molecular and behavioral abnormalities in the Flinders Sensitive Line (FSL) rat model for depression. Herein, we examined the effect of a short-duration, low-frequency DBS template on local field potential (LFP) synchronization patterns along the anterior-posterior axis of the VTA of FSL rats, and correlation of this effect with depressive-like behavior, as compared with non-programmed, continuous low-frequency DBS (npDBS). We used the wavelet phase coherence (WPC) measure for effective representation of time and frequency of LFP patterns, and the forced swim test to measure immobility (despair). Baseline WPC values were lower in FSLs as compared with SD controls, at the low and high gamma frequency range (above 30Hz). Baseline immobility scores for FSL rats were higher than those of SD rats, while pDBS, and not npDBS, significantly reduced FSL immobility scores to control SD levels, up to day 14. pDBS also significantly increased the change (between baseline and day 14) in WPC values, in beta, low gamma and high gamma frequency ranges. The change in high gamma (60-100 Hz) WPC values correlated with improvement in depressive-like behavior. Our results suggest that programmed DBS of the VTA increases interaction among local neuronal populations, an effect that may underlie the normalization of depressive-like behavior. Copyright © 2014. Published by Elsevier Ltd.
    Neuropharmacology 12/2014; 91. DOI:10.1016/j.neuropharm.2014.12.003 · 4.82 Impact Factor
  • Source

Full-text (2 Sources)

Download
41 Downloads
Available from
May 15, 2014